留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Development and clinical advancement of small molecules for ex vivo expansion of hematopoietic stem cell

Jiaxing Li Xiao Wang Jiayu Ding Yasheng Zhu Wenjian Min Wenbing Kuang Kai Yuan Chengliang Sun Peng Yang

Jiaxing Li, Xiao Wang, Jiayu Ding, Yasheng Zhu, Wenjian Min, Wenbing Kuang, Kai Yuan, Chengliang Sun, Peng Yang. Development and clinical advancement of small molecules for ex vivo expansion of hematopoietic stem cell[J]. 机械工程学报. doi: 10.1016/j.apsb.2021.12.006
引用本文: Jiaxing Li, Xiao Wang, Jiayu Ding, Yasheng Zhu, Wenjian Min, Wenbing Kuang, Kai Yuan, Chengliang Sun, Peng Yang. Development and clinical advancement of small molecules for ex vivo expansion of hematopoietic stem cell[J]. 机械工程学报. doi: 10.1016/j.apsb.2021.12.006
Jiaxing Li, Xiao Wang, Jiayu Ding, Yasheng Zhu, Wenjian Min, Wenbing Kuang, Kai Yuan, Chengliang Sun, Peng Yang. Development and clinical advancement of small molecules for ex vivo expansion of hematopoietic stem cell[J]. JOURNAL OF MECHANICAL ENGINEERING. doi: 10.1016/j.apsb.2021.12.006
Citation: Jiaxing Li, Xiao Wang, Jiayu Ding, Yasheng Zhu, Wenjian Min, Wenbing Kuang, Kai Yuan, Chengliang Sun, Peng Yang. Development and clinical advancement of small molecules for ex vivo expansion of hematopoietic stem cell[J]. JOURNAL OF MECHANICAL ENGINEERING. doi: 10.1016/j.apsb.2021.12.006

Development and clinical advancement of small molecules for ex vivo expansion of hematopoietic stem cell

doi: 10.1016/j.apsb.2021.12.006
基金项目: 

This study was supported by National Natural Science Foundation of China (82073701, 31900687), Natural Science Foundation of Jiangsu Province (SBK2019040713, China) and the Project Program of State Key Laboratory of Natural Medicines, China Pharmaceutical University (SKLNMZZ202013, China). This study was also supported by Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University (No. 2020KFKT-5, China), and “Double First-Class” University Project (CPU2018GF04, China).

详细信息
    通讯作者:

    Peng Yang,E-mail:pengyang@cpu.edu.cn

  • 中图分类号: https://www.sciencedirect.com/science/article/pii/S2211383521004780/pdf?md5=e7807dd77c1d301d0f4953c3ac1edb9a&pid=1-s2.0-S2211383521004780-main.pdf

Development and clinical advancement of small molecules for ex vivo expansion of hematopoietic stem cell

Funds: 

This study was supported by National Natural Science Foundation of China (82073701, 31900687), Natural Science Foundation of Jiangsu Province (SBK2019040713, China) and the Project Program of State Key Laboratory of Natural Medicines, China Pharmaceutical University (SKLNMZZ202013, China). This study was also supported by Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University (No. 2020KFKT-5, China), and “Double First-Class” University Project (CPU2018GF04, China).

  • 摘要: Hematopoietic stem cell (HSC) transplantation is the only curative therapy for many diseases. HSCs from umbilical cord blood (UCB) source have many advantages over from bone marrow. However, limited HSC dose in a single CB unit restrict its widespread use. Over the past two decades, ex vivo HSC expansion with small molecules has been an effective approach for obtaining adequate HSCs. Till now, several small-molecule compounds have entered the phase I/II trials, showing safe and favorable pharmacological profiles. As HSC expansion has become a hot topic over recent years, many newly identified small molecules along with novel biological mechanisms for HSC expansion would help solve this challenging issue. Here, we will give an overview of HSC biology, discovery and medicinal chemistry development of small molecules, natural products targeting for HSC expansion, and their recent clinical progresses, as well as potential protein targets for HSC expansion.

     

  • [1] Laurenti E, Gottgens B. From haematopoietic stem cells to complex differentiation landscapes. Nature 2018;553:418-426
    [2] Booth C, Gaspar HB, Thrasher AJ. Treating immunodeficiency through HSC gene therapy. Trends Mol Med 2016;22:317-327
    [3] Riviere I, Dunbar CE, Sadelain M. Hematopoietic stem cell engineering at a crossroads. Blood 2012;119:1107-1116
    [4] Gragert L, Eapen M, Williams E, Freeman J, Spellman S, Baitty R, et al. HLA match likelihoods for hematopoietic stem-cell grafts in the U.S. registry. N Engl J Med 2014;371:339-348
    [5] Cohen S, Roy J, Lachance S, Delisle JS, Marinier A, Busque L, et al. Hematopoietic stem cell transplantation using single UM171-expanded cord blood:a single-arm, phase 1-2 safety and feasibility study. Lancet Haematol 2020;7:134-145
    [6] Ballen KK, Gluckman E, Broxmeyer HE. Umbilical cord blood transplantation:the first 25 years and beyond. Blood 2013;122:491-498
    [7] Wagner JE Jr, Eapen M, Carter S, Wang Y, Schultz KR, Wall DA, et al. One-unit versus two-unit cord-blood transplantation for hematologic cancers. N Engl J Med 2014;371:1685-1694
    [8] Stiff PJ, Montesinos P, Peled T, Landau E, Goudsmid NR, Mandel J, et al. Cohort-controlled comparison of umbilical cord blood transplantation using carlecortemcel-L, a single progenitor-enriched cord blood, to double cord blood unit transplantation. Biol Blood Marrow Transplant 2018;24:1463-1470
    [9] de Lima M, McMannis J, Gee A, Komanduri K, Couriel D, Andersson BS, et al. Transplantation of ex vivo expanded cord blood cells using the copper chelator tetraethylenepentamine:a phase I/II clinical trial. Bone Marrow Transplant 2008;41:771-778
    [10] Boitano AE, Wang J, Romeo R, Bouchez LC, Parker AE, Sutton SE, et al. Aryl hydrocarbon receptor antagonists promote the expansion of human hematopoietic stem cells. Science 2010;329:1345-1348
    [11] Peled T, Shoham H, Aschengrau D, Yackoubov D, Frei G, Rosenheimer GN, et al. Nicotinamide, a SIRT1 inhibitor, inhibits differentiation and facilitates expansion of hematopoietic progenitor cells with enhanced bone marrow homing and engraftment. Exp Hematol 2012;40:342-355
    [12] Fares I, Chagraoui J, Gareau Y, Gingras S, Ruel R, Mayotte N, et al. Cord blood expansion. Pyrimidoindole derivatives are agonists of human hematopoietic stem cell self-renewal. Science 2014;345:1509-1512
    [13] Li Z, Qian P, Shao W, Shi H, He XC, Gogol M, et al. Suppression of m6A reader Ythdf2 promotes hematopoietic stem cell expansion. Cell Res 2018;28:904-917
    [14] Calvanese V, Nguyen AT, Bolan TJ, Vavilina A, Su T, Lee LK, et al. MLLT3 governs human haematopoietic stem-cell self-renewal and engraftment. Nature 2019;576:281-286
    [15] Mikkola HK, Orkin SH. The journey of developing hematopoietic stem cells. Development 2006;133:3733-3744
    [16] Seita J, Weissman IL. Hematopoietic stem cell:self-renewal versus differentiation. Wiley Interdiscip Rev Syst Biol Med 2010;2:640-653
    [17] Pinho S, Frenette PS. Haematopoietic stem cell activity and interactions with the niche. Nat Rev Mol Cell Biol 2019;20:303-320
    [18] Wilkinson AC, Igarashi KJ, Nakauchi H. Haematopoietic stem cell self-renewal in vivo and ex vivo. Nat Rev Genet 2020;21:541-554
    [19] Yamamoto R, Morita Y, Ooehara J, Hamanaka S, Onodera M, Rudolph KL, et al. Clonal analysis unveils self-renewing lineage-restricted progenitors generated directly from hematopoietic stem cells. Cell 2013;154:1112-1126
    [20] Eaves CJ. Hematopoietic stem cells:concepts, definitions, and the new reality. Blood 2015;125:2605-2613
    [21] Morrison SJ, Scadden DT. The bone marrow niche for haematopoietic stem cells. Nature 2014;505:327-334
    [22] Boulais PE, Frenette PS. Making sense of hematopoietic stem cell niches. Blood 2015;125:2621-2629
    [23] Kumar S, Geiger H. HSC niche biology and HSC expansion ex vivo. Trends Mol Med 2017;23:799-819
    [24] Coutu DL, Kokkaliaris KD, Kunz L, Schroeder T. Three-dimensional map of nonhematopoietic bone and bone-marrow cells and molecules. Nat Biotechnol 2017;35:1202-1210
    [25] Nusse R, Clevers H. Wnt/β-catenin signaling, disease, and emerging therapeutic modalities. Cell 2017;169:985-999
    [26] Staal FJ, Chhatta A, Mikkers H. Caught in a Wnt storm:complexities of Wnt signaling in hematopoiesis. Exp Hematol 2016;44:451-457
    [27] Pajcini KV, Speck NA, Pear WS. Notch signaling in mammalian hematopoietic stem cells. Leukemia 2011;25:1525-1532
    [28] Siebel C, Lendahl U. Notch signaling in development, tissue homeostasis, and disease. Physiol Rev 2017;97:1235-1294
    [29] Blank U, Karlsson G, Karlsson S. Signaling pathways governing stem-cell fate. Blood 2008;111:492-503
    [30] Loh KM, van Amerongen R, Nusse R. Generating cellular diversity and spatial form:Wnt signaling and the evolution of multicellular animals. Dev Cell 2016;38:643-655
    [31] Richter J, Traver D, Willert K. The role of Wnt signaling in hematopoietic stem cell development. Crit Rev Biochem Mol Biol 2017;52:414-424
    [32] Staal FJ, Luis TC, Tiemessen MM. WNT signalling in the immune system:WNT is spreading its wings. Nat Rev Immunol 2008;8:581-593
    [33] Sugimura R, He XC, Venkatraman A, Arai F, Box A, Semerad C, et al. Noncanonical Wnt signaling maintains hematopoietic stem cells in the niche. Cell 2012;150:351-365
    [34] Clevers H, Nusse R. Wnt/β-catenin signaling and disease. Cell 2012;149:1192-1205
    [35] Willert K, Brown JD, Danenberg E, Duncan AW, Weissman IL, Reya T, et al. Wnt proteins are lipid-modified and can act as stem cell growth factors. Nature 2003;423:448-452
    [36] Luis TC, Weerkamp F, Naber BA, Baert MR, de Haas EF, Nikolic T, et al. Wnt3a deficiency irreversibly impairs hematopoietic stem cell self-renewal and leads to defects in progenitor cell differentiation. Blood 2009;113:546-554
    [37] Duinhouwer LE, Tuysuz N, Rombouts EW, Ter Borg MN, Mastrobattista E, Spanholtz J, et al. Wnt3a protein reduces growth factor-driven expansion of human hematopoietic stem and progenitor cells in serum-free cultures. PLoS One 2015;10:e0119086
    [38] Luis TC, Naber BA, Roozen PP, Brugman MH, de Haas EF, Ghazvini M, et al. Canonical wnt signaling regulates hematopoiesis in a dosage-dependent fashion. Cell Stem Cell 2011;9:345-356
    [39] Reya T, Duncan AW, Ailles L, Domen J, Scherer DC, Willert K, et al. A role for Wnt signalling in self-renewal of haematopoietic stem cells. Nature 2003;423:409-414
    [40] Janda CY, Dang LT, You C, Chang J, de Lau W, Zhong ZA, et al. Surrogate Wnt agonists that phenocopy canonical Wnt and β-catenin signalling. Nature 2017;545:234-237
    [41] Grainger S, Richter J, Palazon RE, Pouget C, Lonquich B, Wirth S, et al. Wnt9a is required for the aortic amplification of nascent hematopoietic stem cells. Cell Rep 2016;17:1595-1606
    [42] Bray SJ. Notch signalling:a simple pathway becomes complex. Nat Rev Mol Cell Biol 2006;7:678-689
    [43] Calvi LM, Adams GB, Weibrecht KW, Weber JM, Olson DP, Knight MC, et al. Osteoblastic cells regulate the haematopoietic stem cell niche. Nature 2003;425:841-846
    [44] Butler JM, Nolan DJ, Vertes EL, Varnum-Finney B, Kobayashi H, Hooper AT, et al. Endothelial cells are essential for the self-renewal and repopulation of Notch-dependent hematopoietic stem cells. Cell Stem Cell 2010;6:251-264
    [45] Poulos MG, Guo P, Kofler NM, Pinho S, Gutkin MC, Tikhonova A, et al. Endothelial Jagged-1 is necessary for homeostatic and regenerative hematopoiesis. Cell Rep 2013;4:1022-1034
    [46] Negishi N, Suzuki D, Ito R, Irie N, Matsuo K, Yahata T, et al. Effective expansion of engrafted human hematopoietic stem cells in bone marrow of mice expressing human Jagged1. Exp Hematol 2014;42:487-494
    [47] Varnum-Finney B, Brashem-Stein C, Bernstein ID. Combined effects of Notch signaling and cytokines induce a multiple log increase in precursors with lymphoid and myeloid reconstituting ability. Blood 2003;101:1784-1789
    [48] Delaney C, Varnum-Finney B, Aoyama K, Brashem-Stein C, Bernstein ID. Dose-dependent effects of the Notch ligand Delta1 on ex vivo differentiation and in vivo marrow repopulating ability of cord blood cells. Blood 2005;106:2693-2699
    [49] Ohishi K, Varnum-Finney B, Bernstein ID. Delta-1 enhances marrow and thymus repopulating ability of human CD34+CD38- cord blood cells. J Clin Invest 2002;110:1165-1174
    [50] Delaney C, Heimfeld S, Brashem-Stein C, Voorhies H, Manger RL, Bernstein ID. Notch-mediated expansion of human cord blood progenitor cells capable of rapid myeloid reconstitution. Nat Med 2010;16:232-236
    [51] Baron F, Nagler A. Novel strategies for improving hematopoietic reconstruction after allogeneic hematopoietic stem cell transplantation or intensive chemotherapy. Expert Opin Biol Ther 2017;17:163-174
    [52] Horwitz ME, Chao NJ, Rizzieri DA, Long GD, Sullivan KM, Gasparetto C, et al. Umbilical cord blood expansion with nicotinamide provides long-term multilineage engraftment. J Clin Invest 2014;124:3121-3128
    [53] Walasek MA, van Os R, de Haan G. Hematopoietic stem cell expansion:challenges and opportunities. Ann N Y Acad Sci 2012;1266:138-150
    [54] Santulli G. Angiopoietin-like proteins:a comprehensive look. Front Endocrinol (Lausanne) 2014;5:4
    [55] Zheng J, Huynh H, Umikawa M, Silvany R, Zhang CC. Angiopoietin-like protein 3 supports the activity of hematopoietic stem cells in the bone marrow niche. Blood 2011;117:470-479
    [56] Zhang CC, Kaba M, Ge G, Xie K, Tong W, Hug C, et al. Angiopoietin-like proteins stimulate ex vivo expansion of hematopoietic stem cells. Nat Med 2006;12:240-245
    [57] Akhter S, Rahman MM, Lee HS, Kim HJ, Hong ST. Dynamic roles of angiopoietin-like proteins 1, 2, 3, 4, 6 and 7 in the survival and enhancement of ex vivo expansion of bone-marrow hematopoietic stem cells. Protein Cell 2013;4:220-230
    [58] Bhardwaj G, Murdoch B, Wu D, Baker DP, Williams KP, Chadwick K, et al. Sonic hedgehog induces the proliferation of primitive human hematopoietic cells via BMP regulation. Nat Immunol 2001;2:172-180
    [59] Himburg HA, Termini CM, Schlussel L, Kan J, Li M, Zhao L, et al. Distinct bone marrow sources of pleiotrophin control hematopoietic stem cell maintenance and regeneration. Cell Stem Cell 2018;23:370-381
    [60] Himburg HA, Yan X, Doan PL, Quarmyne M, Micewicz E, McBride W, et al. Pleiotrophin mediates hematopoietic regeneration via activation of RAS. J Clin Invest 2014;124:4753-4758
    [61] Himburg HA, Harris JR, Ito T, Daher P, Russell JL, Quarmyne M, et al. Pleiotrophin regulates the retention and self-renewal of hematopoietic stem cells in the bone marrow vascular niche. Cell Rep 2012;2:964-975
    [62] Himburg HA, Muramoto GG, Daher P, Meadows SK, Russell JL, Doan P, et al. Pleiotrophin regulates the expansion and regeneration of hematopoietic stem cells. Nat Med 2010;16:475-482
    [63] Wagner JE Jr, Brunstein CG, Boitano AE, DeFor TE, McKenna D, Sumstad D, et al. Phase I/II trial of StemRegenin-1 expanded umbilical cord blood hematopoietic stem cells supports testing as a stand-alone graft. Cell Stem Cell 2016;18:144-155
    [64] Horwitz ME, Wease S, Blackwell B, Valcarcel D, Frassoni F, Boelens JJ, et al. Phase I/II study of stem-cell transplantation using a single cord blood unit expanded ex vivo with nicotinamide. J Clin Oncol 2019;37:367-374
    [65] Feng Y, Xie XY, Yang YQ, Sun YT, Ma WH, Zhou PJ, et al. Synthesis and evaluation of pyrimidoindole analogs in umbilical cord blood ex vivo expansion. Eur J Med Chem 2019;174:181-197
    [66] Peled T, Landau E, Prus E, Treves AJ, Nagler A, Fibach E. Cellular copper content modulates differentiation and self-renewal in cultures of cord blood-derived CD34+ cells. Br J Haematol 2002;116:655-661
    [67] Peled T, Glukhman E, Hasson N, Adi S, Assor H, Yudin D, et al. Chelatable cellular copper modulates differentiation and self-renewal of cord blood-derived hematopoietic progenitor cells. Exp Hematol 2005;33:1092-1100
    [68] Peled T, Landau E, Mandel J, Glukhman E, Goudsmid NR, Nagler A, et al. Linear polyamine copper chelator tetraethylenepentamine augments long-term ex vivo expansion of cord blood-derived CD34+ cells and increases their engraftment potential in NOD/SCID mice. Exp Hematol 2004;32:547-555
    [69] Peled T, Mandel J, Goudsmid RN, Landor C, Hasson N, Harati D, et al. Pre-clinical development of cord blood-derived progenitor cell graft expanded ex vivo with cytokines and the polyamine copper chelator tetraethylenepentamine. Cytotherapy 2004;6:344-355
    [70] Feher I, Gidali J. Prostaglandin E2 as stimulator of haemopoietic stem cell proliferation. Nature 1974;247:550-551
    [71] North TE, Goessling W, Walkley CR, Lengerke C, Kopani KR, Lord AM, et al. Prostaglandin E2 regulates vertebrate haematopoietic stem cell homeostasis. Nature 2007;447:1007-1011
    [72] Hoggatt J, Singh P, Sampath J, Pelus LM. Prostaglandin E2 enhances hematopoietic stem cell homing, survival, and proliferation. Blood 2009;113:5444-5455
    [73] Hoggatt J, Singh P, Stilger KN, Plett PA, Sampson CH, Chua HL, et al. Recovery from hematopoietic injury by modulating prostaglandin E2 signaling post-irradiation. Blood Cells Mol Dis 2013;50:147-153
    [74] Ikushima YM, Arai F, Hosokawa K, Toyama H, Takubo K, Furuyashiki T, et al. Prostaglandin E2 regulates murine hematopoietic stem/progenitor cells directly via EP4 receptor and indirectly through mesenchymal progenitor cells. Blood 2013;121:1995-2007
    [75] Goessling W, North TE, Loewer S, Lord AM, Lee S, Stoick-Cooper CL, et al. Genetic interaction of PGE2 and Wnt signaling regulates developmental specification of stem cells and regeneration. Cell 2009;136:1136-1147
    [76] Hagedorn EJ, Durand EM, Fast EM, Zon LI. Getting more for your marrow:boosting hematopoietic stem cell numbers with PGE2. Exp Cell Res 2014;329:220-226
    [77] Goessling W, Allen RS, Guan X, Jin P, Uchida N, Dovey M, et al. Prostaglandin E2 enhances human cord blood stem cell xenotransplants and shows long-term safety in preclinical nonhuman primate transplant models. Cell Stem Cell 2011;8:445-458
    [78] Cutler C, Multani P, Robbins D, Kim HT, Le T, Hoggatt J, et al. Prostaglandin-modulated umbilical cord blood hematopoietic stem cell transplantation. Blood 2013;122:3074-3081
    [79] Zhang Y, Desai A, Yang SY, Bae KB, Antczak MI, Fink SP, et al. Inhibition of the prostaglandin-degrading enzyme 15-PGDH potentiates tissue regeneration. Science 2015;348:aaa2340
    [80] Desai A, Zhang Y, Park Y, Dawson DM, Larusch GA, Kasturi L, et al. A second-generation 15-PGDH inhibitor promotes bone marrow transplant recovery independently of age, transplant dose and granulocyte colony-stimulating factor support. Haematologica 2018;103:1054-1064
    [81] Antczak MI, Zhang Y, Wang C, Doran J, Naidoo J, Voruganti S, et al. Inhibitors of 15-prostaglandin dehydrogenase to potentiate tissue repair. J Med Chem 2017;60:3979-4001
    [82] Quarmyne M, Doan PL, Himburg HA, Yan X, Nakamura M, Zhao L, et al. Protein tyrosine phosphatase-σ regulates hematopoietic stem cell-repopulating capacity. J Clin Invest 2015;125:177-182
    [83] Zhang Y, Roos M, Himburg H, Termini CM, Quarmyne M, Li M, et al. PTPσ inhibitors promote hematopoietic stem cell regeneration. Nat Commun 2019;10:3667
    [84] Chang L, Karin M. Mammalian MAP kinase signalling cascades. Nature 2001;410:37-40
    [85] Navas TA, Mohindru M, Estes M, Ma JY, Sokol L, Pahanish P, et al. Inhibition of overactivated p38 MAPK can restore hematopoiesis in myelodysplastic syndrome progenitors. Blood 2006;108:4170-4177
    [86] Zou J, Zou P, Wang J, Li L, Wang Y, Zhou D, et al. Inhibition of p38 MAPK activity promotes ex vivo expansion of human cord blood hematopoietic stem cells. Ann Hematol 2012;91:813-823
    [87] Bari S, Zhong Q, Fan X, Poon Z, Lim AST, Lim TH, et al. Ex vivo expansion of CD34+CD90+CD49f+ hematopoietic stem and progenitor cells from non-enriched umbilical cord blood with azole compounds. Stem Cells Transl Med 2018;7:376-393
    [88] Passegue E, Wagner EF, Weissman IL. JunB deficiency leads to a myeloproliferative disorder arising from hematopoietic stem cells. Cell 2004;119:431-443
    [89] Santaguida M, Schepers K, King B, Sabnis AJ, Forsberg EC, Attema JL, et al. JunB protects against myeloid malignancies by limiting hematopoietic stem cell proliferation and differentiation without affecting self-renewal. Cancer Cell 2009;15:341-352
    [90] Zhang T, Inesta-Vaquera F, Niepel M, Zhang J, Ficarro SB, Machleidt T, et al. Discovery of potent and selective covalent inhibitors of JNK. Chem Biol 2012;19:140-154
    [91] Xiao X, Lai W, Xie H, Liu Y, Guo W, Liu Y, et al. Targeting JNK pathway promotes human hematopoietic stem cell expansion. Cell Discov 2019;5:2
    [92] Zimmermann J, Buchdunger E, Mett H, Meyer T, Lydon NB, Traxler P. Phenylamino-pyrimidine (PAP)-derivatives:a new class of potent and highly selective PDGF-receptor autophosphorylation inhibitors. Bioorg Med Chem Lett 1996;6:1221-1226
    [93] Yu H, Yuan Y, Shen H, Cheng T. Hematopoietic stem cell exhaustion impacted by p18 INK4C and p21 Cip1/Waf1 in opposite manners. Blood 2006;107:1200-1206
    [94] Yuan Y, Shen H, Franklin DS, Scadden DT, Cheng T. In vivo self-renewing divisions of haematopoietic stem cells are increased in the absence of the early G1-phase inhibitor, p18INK4C. Nat Cell Biol 2004;6:436-442
    [95] Gao Y, Yang P, Shen H, Yu H, Song X, Zhang L, et al. Small-molecule inhibitors targeting INK4 protein p18INK4C enhance ex vivo expansion of haematopoietic stem cells. Nat Commun 2015;6:6328
    [96] Li Y, Zhang W, Zhang Y, Ding Y, Yang M, He M, et al. Enhanced self-renewal of human long-term hematopoietic stem cells by a sulfamoyl benzoate derivative targeting p18INK4C. Blood Adv 2021;5:3362-3372
    [97] Sirin O, Lukov GL, Mao R, Conneely OM, Goodell MA. The orphan nuclear receptor Nurr1 restricts the proliferation of haematopoietic stem cells. Nat Cell Biol 2010;12:1213-1219
    [98] Xie XQ, Yang P, Zhang Y, Zhang P, Wang L, Ding Y, et al. Discovery of novel INK4C small-molecule inhibitors to promote human and murine hematopoietic stem cell ex vivo expansion. Sci Rep 2015;5:18115
    [99] Hua P, Hester J, Adigbli G, Li R, Psaila B, Roy A, et al. The BET inhibitor CPI203 promotes ex vivo expansion of cord blood long-term repopulating HSCs and megakaryocytes. Blood 2020;136:2410-2415
    [100] Evans RM, Mangelsdorf DJ. Nuclear receptors, RXR, and the Big Bang. Cell 2014;157:255-266
    [101] Guo B, Huang X, Lee MR, Lee SA, Broxmeyer HE. Antagonism of PPARγ signaling expands human hematopoietic stem and progenitor cells by enhancing glycolysis. Nat Med 2018;24:360-367
    [102] Leesnitzer LM, Parks DJ, Bledsoe RK, Cobb JE, Collins JL, Consler TG, et al. Functional consequences of cysteine modification in the ligand binding sites of peroxisome proliferator activated receptors by GW9662. Biochemistry 2002;41:6640-6650
    [103] Liu X, Zheng H, Yu WM, Cooper TM, Bunting KD, Qu CK. Maintenance of mouse hematopoietic stem cells ex vivo by reprogramming cellular metabolism. Blood 2015;125:1562-1565
    [104] Boyer LA, Lee TI, Cole MF, Johnstone SE, Levine SS, Zucker JP, et al. Core transcriptional regulatory circuitry in human embryonic stem cells. Cell 2005;122:947-956
    [105] Szabo E, Rampalli S, Risueno RM, Schnerch A, Mitchell R, Fiebig-Comyn A, et al. Direct conversion of human fibroblasts to multilineage blood progenitors. Nature 2010;468:521-526
    [106] Huang X, Lee MR, Cooper S, Hangoc G, Hong KS, Chung HM, et al. Activation of OCT4 enhances ex vivo expansion of human cord blood hematopoietic stem and progenitor cells by regulating HOXB4 expression. Leukemia 2016;30:144-153
    [107] Nishino T, Miyaji K, Ishiwata N, Arai K, Yui M, Asai Y, et al. Ex vivo expansion of human hematopoietic stem cells by a small-molecule agonist of c-MPL. Exp Hematol 2009;37:1364-1377
    [108] Kao YR, Chen J, Narayanagari SR, Todorova TI, Aivalioti MM, Ferreira M, et al. Thrombopoietin receptor-independent stimulation of hematopoietic stem cells by eltrombopag. Sci Transl Med 2018;10:eaas9563
    [109] Trowbridge JJ, Xenocostas A, Moon RT, Bhatia M. Glycogen synthase kinase-3 is an in vivo regulator of hematopoietic stem cell repopulation. Nat Med 2005;12:89-98
    [110] Ferensztajn-Rochowiak E, Rybakowski JK. The effect of lithium on hematopoietic, mesenchymal and neural stem cells. Pharmacol Rep 2016;68:224-230
    [111] Ko KH, Holmes T, Palladinetti P, Song E, Nordon R, O'Brien TA, et al. GSK-3β inhibition promotes engraftment of ex vivo-expanded hematopoietic stem cells and modulates gene expression. Stem Cells 2011;29:108-118
    [112] Huang J, Nguyen-McCarty M, Hexner EO, Danet-Desnoyers G, Klein PS. Maintenance of hematopoietic stem cells through regulation of Wnt and mTOR pathways. Nat Med 2012;18:1778-1785
    [113] Li J, Zhang L, Yin L, Ma N, Wang T, Wu Y, et al. In vitro expansion of hematopoietic stem cells by inhibition of both GSK3 and p38 signaling. Stem Cells Dev 2019;28:1486-1497
    [114] Rothbart SB, Strahl BD. Interpreting the language of histone and DNA modifications. Biochim Biophys Acta 2014;1839:627-643
    [115] Jones PA. Functions of DNA methylation:islands, start sites, gene bodies and beyond. Nat Rev Genet 2012;13:484-492
    [116] Cimmino L. Methylation maintains HSC division fate. Proc Natl Acad Sci U S A 2017;114:192-194
    [117] Zhao J, Chen X, Song G, Zhang J, Liu H, Liu X. Uhrf1 controls the self-renewal versus differentiation of hematopoietic stem cells by epigenetically regulating the cell-division modes. Proc Natl Acad Sci U S A 2017;114:142-151
    [118] Nishino T, Wang C, Mochizuki-Kashio M, Osawa M, Nakauchi H, Iwama A. Ex vivo expansion of human hematopoietic stem cells by garcinol, a potent inhibitor of histone acetyltransferase. PLoS One 2011;6:e24298
    [119] TeKippe M, Harrison DE, Chen J. Expansion of hematopoietic stem cell phenotype and activity in Trp53-null mice. Exp Hematol 2003;31:521-527
    [120] Shojaei F, Trowbridge J, Gallacher L, Yuefei L, Goodale D, Karanu F, et al. Hierarchical and ontogenic positions serve to define the molecular basis of human hematopoietic stem cell behavior. Dev Cell 2005;8:651-663
    [121] De Felice L, Tatarelli C, Mascolo MG, Gregorj C, Agostini F, Fiorini R, et al. Histone deacetylase inhibitor valproic acid enhances the cytokine-induced expansion of human hematopoietic stem cells. Cancer Res 2005;65:1505-1513
    [122] Bug G, Gul H, Schwarz K, Pfeifer H, Kampfmann M, Zheng X, et al. Valproic acid stimulates proliferation and self-renewal of hematopoietic stem cells. Cancer Res 2005;65:2537-2541
    [123] Papa L, Zimran E, Djedaini M, Ge Y, Ozbek U, Sebra R, et al. Ex vivo human HSC expansion requires coordination of cellular reprogramming with mitochondrial remodeling and p53 activation. Blood Adv 2018;2:2766-2779
    [124] Zimran E, Papa L, Djedaini M, Patel A, Iancu-Rubin C, Hoffman R. Expansion and preservation of the functional activity of adult hematopoietic stem cells cultured ex vivo with a histone deacetylase inhibitor. Stem Cells Transl Med 2020;9:531-542
    [125] Iancu-Rubin C, Hoffman R. Role of epigenetic reprogramming in hematopoietic stem cell function. Curr Opin Hematol 2015;22:279-285
    [126] Chaurasia P, Gajzer DC, Schaniel C, D'Souza S, Hoffman R. Epigenetic reprogramming induces the expansion of cord blood stem cells. J Clin Invest 2014;124:2378-2395
    [127] Seet LF, Teng E, Lai YS, Laning J, Kraus M, Wnendt S, et al. Valproic acid enhances the engraftability of human umbilical cord blood hematopoietic stem cells expanded under serum-free conditions. Eur J Haematol 2009;82:124-132
    [128] Mahmud N, Petro B, Baluchamy S, Li X, Taioli S, Lavelle D, et al. Differential effects of epigenetic modifiers on the expansion and maintenance of human cord blood stem/progenitor cells. Biol Blood Marrow Transplant 2014;20:480-489
    [129] Walasek MA, Bystrykh L, van den Boom V, Olthof S, Ausema A, Ritsema M, et al. The combination of valproic acid and lithium delays hematopoietic stem/progenitor cell differentiation. Blood 2012;119:3050-3059
    [130] Huang X, Guo B, Liu S, Wan J, Broxmeyer HE. Neutralizing negative epigenetic regulation by HDAC5 enhances human haematopoietic stem cell homing and engraftment. Nat Commun 2018;9:2741
    [131] Milhem M, Mahmud N, Lavelle D, Araki H, DeSimone J, Saunthararajah Y, et al. Modification of hematopoietic stem cell fate by 5aza 2'deoxycytidine and trichostatin A. Blood 2004;103:4102-4110
    [132] Araki H, Mahmud N, Milhem M, Nunez R, Xu M, Beam CA, et al. Expansion of human umbilical cord blood SCID-repopulating cells using chromatin-modifying agents. Exp Hematol 2006;34:140-149
    [133] Araki H, Yoshinaga K, Boccuni P, Zhao Y, Hoffman R, Mahmud N. Chromatin-modifying agents permit human hematopoietic stem cells to undergo multiple cell divisions while retaining their repopulating potential. Blood 2007;109:3570-3578
    [134] Saraf S, Araki H, Petro B, Park Y, Taioli S, Yoshinaga KG, et al. Ex vivo expansion of human mobilized peripheral blood stem cells using epigenetic modifiers. Transfusion 2015;55:864-874
    [135] V M S, Kale VP, Limaye LS. Expansion of cord blood CD34 cells in presence of zVADfmk and zLLYfmk improved their in vitro functionality and in vivo engraftment in NOD/SCID mouse. PLoS One 2010;5:e12221
    [136] Chute JP, Muramoto GG, Whitesides J, Colvin M, Safi R, Chao NJ, et al. Inhibition of aldehyde dehydrogenase and retinoid signaling induces the expansion of human hematopoietic stem cells. Proc Natl Acad Sci U S A 2006;103:11707-11712
    [137] Park GB, Kim MJ, Vasileva EA, Mishchenko NP, Fedoreyev SA, Stonik VA, et al. Echinochrome a promotes ex vivo expansion of peripheral blood-derived CD34+ cells, potentially through downregulation of ROS production and activation of the Src-Lyn-p110δ Pathway. Mar Drugs 2019;17:526
    [138] Zhang QS, Marquez-Loza L, Eaton L, Duncan AW, Goldman DC, Anur P, et al. Fancd2-/- mice have hematopoietic defects that can be partially corrected by resveratrol. Blood 2010;116:5140-5148
    [139] Rimmele P, Lofek-Czubek S, Ghaffari S. Resveratrol increases the bone marrow hematopoietic stem and progenitor cell capacity. Am J Hematol 2014;89:235-238
    [140] Heinz N, Ehrnstrom B, Schambach A, Schwarzer A, Modlich U, Schiedlmeier B. Comparison of different cytokine conditions reveals resveratrol as a new molecule for ex vivo cultivation of cord blood-derived hematopoietic stem cells. Stem Cells Transl Med 2015;4:1064-1072
    [141] Liu Y, Zhang B, Zhang J, Wang S, Yao H, He L, et al. CAPE promotes the expansion of human umbilical cord blood-derived hematopoietic stem and progenitor cells in vitro. Sci China Life Sci 2014;57:188-194
    [142] Chen X, Han Y, Zhang B, Liu Y, Wang S, Liao T, et al. Caffeic acid phenethyl ester promotes haematopoietic stem/progenitor cell homing and engraftment. Stem Cell Res Ther 2017;8:255
    [143] Tanhuad N, Thongsa-Ad U, Sutjarit N, Yoosabai P, Panvongsa W, Wongniam S, et al. Ex vivo expansion and functional activity preservation of adult hematopoietic stem cells by a diarylheptanoid from Curcuma comosa. Biomed Pharmacother 2021;143:112102
    [144] Lim W, Ryu S, Bazer FW, Kim SM, Song G. Chrysin attenuates progression of ovarian cancer cells by regulating signaling cascades and mitochondrial dysfunction. J Cell Physiol 2018;233:3129-3140
    [145] Li Y, He M, Zhang W, Yang M, Ding Y, Xu S, et al. Antioxidant small molecule compound chrysin promotes the self-renewal of hematopoietic stem cells. Front Pharmacol 2020;11:399
    [146] Yang M, Li K, Ng PC, Chuen CK, Lau TK, Cheng YS, et al. Promoting effects of serotonin on hematopoiesis:ex vivo expansion of cord blood CD34+ stem/progenitor cells, proliferation of bone marrow stromal cells, and antiapoptosis. Stem Cells 2007;25:1800-1806
    [147] Nogueira-Pedro A, Barbosa CM, Segreto HR, Lungato L, D'Almeida V, Moraes AA, et al. α-Tocopherol induces hematopoietic stem/progenitor cell expansion and ERK1/2-mediated differentiation. J Leukoc Biol 2011;90:1111-1117
    [148] Purton LE, Bernstein ID, Collins SJ. All-trans retinoic acid delays the differentiation of primitive hematopoietic precursors (lin-c-kit+Sca-1+) while enhancing the terminal maturation of committed granulocyte/monocyte progenitors. Blood 1999;94:483-495
    [149] Purton LE, Bernstein ID, Collins SJ. All-trans retinoic acid enhances the long-term repopulating activity of cultured hematopoietic stem cells. Blood 2000;95:470-477
    [150] Kouzarides T. Chromatin modifications and their function. Cell 2007;128:693-705
    [151] He N, Chan CK, Sobhian B, Chou S, Xue Y, Liu M, et al. Human polymerase-associated factor complex (PAFc) connects the super elongation complex (SEC) to RNA polymerase II on chromatin. Proc Natl Acad Sci U S A 2011;108:636-645
    [152] Li Y, Wen H, Xi Y, Tanaka K, Wang H, Peng D, et al. AF9 YEATS domain links histone acetylation to DOT1L-mediated H3K79 methylation. Cell 2014;159:558-571
    [153] Hentze MW, Castello A, Schwarzl T, Preiss T. A brave new world of RNA-binding proteins. Nat Rev Mol Cell Biol 2018;19:327-341
    [154] Byers RJ, Currie T, Tholouli E, Rodig SJ, Kutok JL. MSI2 protein expression predicts unfavorable outcome in acute myeloid leukemia. Blood 2011;118:2857-2867
    [155] de Andres-Aguayo L, Varas F, Kallin EM, Infante JF, Wurst W, Floss T, et al. Musashi 2 is a regulator of the HSC compartment identified by a retroviral insertion screen and knockout mice. Blood 2011;118:554-564
    [156] Park SM, Deering RP, Lu Y, Tivnan P, Lianoglou S, Al-Shahrour F, et al. Musashi-2 controls cell fate, lineage bias, and TGF-β signaling in HSCs. J Exp Med 2014;211:71-87
    [157] Rentas S, Holzapfel NT, Belew MS, Pratt GA, Voisin V, Wilhelm BT, et al. Musashi-2 attenuates AHR signalling to expand human haematopoietic stem cells. Nature 2016;532:508-511
    [158] Minuesa G, Antczak C, Shum D, Radu C, Bhinder B, Li Y, et al. A 1536-well fluorescence polarization assay to screen for modulators of the MUSASHI family of RNA-binding proteins. Comb Chem High Throughput Screen 2014;17:596-609
    [159] Minuesa G, Albanese SK, Xie W, Kazansky Y, Worroll D, Chow A, et al. Small-molecule targeting of MUSASHI RNA-binding activity in acute myeloid leukemia. Nat Commun 2019;10:2691
    [160] Zhao BS, Roundtree IA, He C. Post-transcriptional gene regulation by mRNA modifications. Nat Rev Mol Cell Biol 2017;18:31-42
    [161] Zhang C, Chen Y, Sun B, Wang L, Yang Y, Ma D, et al. m6A modulates haematopoietic stem and progenitor cell specification. Nature 2017;549:273-276
    [162] Vu LP, Pickering BF, Cheng Y, Zaccara S, Nguyen D, Minuesa G, et al. The N6-methyladenosine (m6A)-forming enzyme METTL3 controls myeloid differentiation of normal hematopoietic and leukemia cells. Nat Med 2017;23:1369-1376
    [163] Weng H, Huang H, Wu H, Qin X, Zhao BS, Dong L, et al. METTL14 inhibits hematopoietic stem/progenitor differentiation and promotes leukemogenesis via mRNA m6A Modification. Cell Stem Cell 2018;22:191-205
    [164] Li Z, He XC, Li L. Hematopoietic stem cells:self-renewal and expansion. Curr Opin Hematol 2019;26:258-265
    [165] Zhu T, Roundtree IA, Wang P, Wang X, Wang L, Sun C, et al. Crystal structure of the YTH domain of YTHDF2 reveals mechanism for recognition of N6-methyladenosine. Cell Res 2014;24:1493-1496
    [166] Li F, Zhao D, Wu J, Shi Y. Structure of the YTH domain of human YTHDF2 in complex with an m6A mononucleotide reveals an aromatic cage for m6A recognition. Cell Res 2014;24:1490-1492
    [167] Du H, Zhao Y, He J, Zhang Y, Xi H, Liu M, et al. YTHDF2 destabilizes m6A-containing RNA through direct recruitment of the CCR4-NOT deadenylase complex. Nat Commun 2016;7:12626
    [168] Wang H, Zuo H, Liu J, Wen F, Gao Y, Zhu X, et al. Loss of YTHDF2-mediated m6A-dependent mRNA clearance facilitates hematopoietic stem cell regeneration. Cell Res 2018;28:1035-1038
    [169] Paris J, Morgan M, Campos J, Spencer GJ, Shmakova A, Ivanova I, et al. Targeting the RNA m6A reader YTHDF2 selectively compromises cancer stem cells in acute myeloid leukemia. Cell Stem Cell 2019;25:137-148
    [170] Fonseca-Pereira D, Arroz-Madeira S, Rodrigues-Campos M, Barbosa IA, Domingues RG, Bento T, et al. The neurotrophic factor receptor RET drives haematopoietic stem cell survival and function. Nature 2014;514:98-101
    [171] Grey W, Chauhan R, Piganeau M, Huerga Encabo H, Garcia-Albornoz M, McDonald NQ, et al. Activation of the receptor tyrosine kinase RET improves long-term hematopoietic stem cell outgrowth and potency. Blood 2020;136:2535-2547
    [172] Sauvageau G, Iscove NN, Humphries RK. In vitro and in vivo expansion of hematopoietic stem cells. Oncogene 2004;23:7223-7232
    [173] Wang L, Guan X, Wang H, Shen B, Zhang Y, Ren Z, et al. A small-molecule/cytokine combination enhances hematopoietic stem cell proliferation via inhibition of cell differentiation. Stem Cell Res Ther 2017;8:169
    [174] Jiang M, Chen H, Lai S, Wang R, Qiu Y, Ye F, et al. Maintenance of human haematopoietic stem and progenitor cells in vitro using a chemical cocktail. Cell Discov 2018;4:59
  • 加载中
计量
  • 文章访问数:  36
  • HTML全文浏览量:  24
  • PDF下载量:  0
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-10-17
  • 修回日期:  2021-12-02
  • 录用日期:  2021-12-09
  • 网络出版日期:  2023-03-17

目录

    /

    返回文章
    返回