留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Gentiopicroside targets PAQR3 to activate the PI3K/AKT signaling pathway and ameliorate disordered glucose and lipid metabolism

Haiming Xiao Xiaohong Sun Zeyuan Lin Yan Yang Meng Zhang Zhanchi Xu Peiqing Liu Zhongqiu Liu Heqing Huang

Haiming Xiao, Xiaohong Sun, Zeyuan Lin, Yan Yang, Meng Zhang, Zhanchi Xu, Peiqing Liu, Zhongqiu Liu, Heqing Huang. Gentiopicroside targets PAQR3 to activate the PI3K/AKT signaling pathway and ameliorate disordered glucose and lipid metabolism[J]. 机械工程学报. doi: 10.1016/j.apsb.2021.12.023
引用本文: Haiming Xiao, Xiaohong Sun, Zeyuan Lin, Yan Yang, Meng Zhang, Zhanchi Xu, Peiqing Liu, Zhongqiu Liu, Heqing Huang. Gentiopicroside targets PAQR3 to activate the PI3K/AKT signaling pathway and ameliorate disordered glucose and lipid metabolism[J]. 机械工程学报. doi: 10.1016/j.apsb.2021.12.023
Haiming Xiao, Xiaohong Sun, Zeyuan Lin, Yan Yang, Meng Zhang, Zhanchi Xu, Peiqing Liu, Zhongqiu Liu, Heqing Huang. Gentiopicroside targets PAQR3 to activate the PI3K/AKT signaling pathway and ameliorate disordered glucose and lipid metabolism[J]. JOURNAL OF MECHANICAL ENGINEERING. doi: 10.1016/j.apsb.2021.12.023
Citation: Haiming Xiao, Xiaohong Sun, Zeyuan Lin, Yan Yang, Meng Zhang, Zhanchi Xu, Peiqing Liu, Zhongqiu Liu, Heqing Huang. Gentiopicroside targets PAQR3 to activate the PI3K/AKT signaling pathway and ameliorate disordered glucose and lipid metabolism[J]. JOURNAL OF MECHANICAL ENGINEERING. doi: 10.1016/j.apsb.2021.12.023

Gentiopicroside targets PAQR3 to activate the PI3K/AKT signaling pathway and ameliorate disordered glucose and lipid metabolism

doi: 10.1016/j.apsb.2021.12.023
基金项目: 

This work was supported by research grants from the National Natural Science Foundation of China (No. 81770816 and 81973375), the Key Project of Natural Science Foundation of Guangdong Province, China (No. 2017A030311036), Seed Program of Guangdong Province (No. 2017B090903004, China) and Guangdong Provincial Key Field and Program Project (No. 2020B1111100004, China).

详细信息
    通讯作者:

    Peiqing Liu,E-mail:liupq@mail.sysu.edu.cn

    Zhongqiu Liu,E-mail:liuzq@gzucm.edu.cn

    Heqing Huang,E-mail:huangheq@mail.sysu.edu.cn

  • 中图分类号: https://www.sciencedirect.com/science/article/pii/S2211383521004949/pdf?md5=b0efca1b70b92bd53c957b078a19608b&pid=1-s2.0-S2211383521004949-main.pdf

Gentiopicroside targets PAQR3 to activate the PI3K/AKT signaling pathway and ameliorate disordered glucose and lipid metabolism

Funds: 

This work was supported by research grants from the National Natural Science Foundation of China (No. 81770816 and 81973375), the Key Project of Natural Science Foundation of Guangdong Province, China (No. 2017A030311036), Seed Program of Guangdong Province (No. 2017B090903004, China) and Guangdong Provincial Key Field and Program Project (No. 2020B1111100004, China).

  • 摘要: The obstruction of post-insulin receptor signaling is the main mechanism of insulin-resistant diabetes. Progestin and adipoQ receptor 3 (PAQR3), a key regulator of inflammation and metabolism, can negatively regulate the PI3K/AKT signaling pathway. Here, we report that gentiopicroside (GPS), the main bioactive secoiridoid glycoside of Gentiana manshurica Kitagawa, decreased lipid synthesis and increased glucose utilization in palmitic acid (PA) treated HepG2 cells. Additionally, GPS improved glycolipid metabolism in streptozotocin (STZ) treated high-fat diet (HFD)-induced diabetic mice. Our findings revealed that GPS promoted the activation of the PI3K/AKT axis by facilitating DNA-binding protein 2 (DDB2)-mediated PAQR3 ubiquitinated degradation. Moreover, results of surface plasmon resonance (SPR), microscale thermophoresis (MST) and thermal shift assay (TSA) indicated that GPS directly binds to PAQR3. Results of molecular docking and cellular thermal shift assay (CETSA) revealed that GPS directly bound to the amino acids of the PAQR3 NH2-terminus including Leu40, Asp42, Glu69, Tyr125 and Ser129, and spatially inhibited the interaction between PAQR3 and the PI3K catalytic subunit (P110α) to restore the PI3K/AKT signaling pathway. In summary, our study identified GPS, which inhibits PAQR3 expression and directly targets PAQR3 to restore insulin signaling pathway, as a potential drug candidate for the treatment of diabetes.

     

  • [1] Kahn SE, Hull RL, Utzschneider KM. Mechanisms linking obesity to insulin resistance and type 2 diabetes. Nature 2006; 444:840-846
    [2] Cho NH, Shaw JE, Karuranga S, Huang Y, Fernandes JDD, Ohlrogge AW, et al. IDF Diabetes Atlas:global estimates of diabetes prevalence for 2017 and projections for 2045. Diabetes Res Clin Pract 2018; 138:271-281
    [3] Saltiel AR, Kahn CR. Insulin signalling and the regulation of glucose and lipid metabolism. Nature 2001; 414:799-806
    [4] Choi K, Kim YB. Molecular mechanism of insulin resistance in obesity and type 2 diabetes. Korean J Intern Med 2010; 25:119-129
    [5] Engin A. Non-alcoholic fatty liver disease. Adv Exp Med Biol 2017; 960:443-467
    [6] Gastaldelli A, Cusi K. From NASH to diabetes and from diabetes to NASH:mechanisms and treatment options. JHEP Rep 2019; 1:312-328
    [7] Younossi ZM, Golabi P, de Avila L, Paik JM, Srishord M, Fukui N, et al. The global epidemiology of NAFLD and NASH in patients with type 2 diabetes:a systematic review and meta-analysis. J Hepatol 2019; 71:793-801
    [8] Cefalu WT, Berg EG, Saraco M, Petersen MP, Uelmen S, Robinson S, et al. Classification and diagnosis of diabetes:standards of medical care in diabetes-2019. Diabetes Care 2019; 42:S13-28
    [9] Wang X, Wang Z, Chen Y. The functions of PI3K/AKT signaling pathway in glucose homeostasis. Chin. Bull. Life Sci 2013; 25:133-139
    [10] Petersen MC, Shulman GI. Mechanisma of insulin action and insulin resistance. Physiol Rev 2018; 98:2133-2223
    [11] Lee J, Kim MS. The role of GSK3 in glucose homeostasis and the development of insulin resistance. Diabetes Res Clin Pract 2007; 77:S49-S57
    [12] Ni YG, Wang N, Cao DJ, Sachan N, Morris DJ, Gerard RD, et al. FoxO transcription factors activate Akt and attenuate insulin signaling in heart by inhibiting protein phosphatasesy. Proc Natl Acad Sci U S A 2007; 104:20517-20522
    [13] Li X, Li Y, Yang W, Xiao C, Fu S, Deng Q, et al. SREBP-1c overexpression induces triglycerides accumulation through increasing lipid synthesis and decreasing lipid oxidation and VLDL assembly in bovine hepatocytes. J Steroid Biochem Mol Biol 2014; 143:174-182
    [14] Plum L, Rother E, Muenzberg H, Wunderlich FT, Morgan DA, Hampel B, et al. Enhanced leptin-stimulated PI3K activation in the CNS promotes white adipose tissue transdifferentiation. Cell Metab 2007; 6:431-445
    [15] Liu TY, Shi CX, Gao R, Sun HJ, Xiong XQ, Ding L, et al. Irisin inhibits hepatic gluconeogenesis and increases glycogen synthesis via the PI3K/Akt pathway in type 2 diabetic mice and hepatocytes. Clin Sci (Lond) 2015; 129:839-850
    [16] Marone R, Cmijanovic V, Giese B, Wymann MP. Targeting phosphoinositide 3-kinase-moving towards therapy. Biochim Biophys Acta 2008; 1784:159-185
    [17] Knight ZA, Gonzalez B, Feldman ME, Zunder ER, Goldenberg DD, Williams O, et al. A pharmacological map of the PI3-K family defines a role for p110 alpha in insulin signaling. Cell 2006; 125:733-747
    [18] Vanhaesebroeck B, Guillermet-Guibert J, Graupera M, Bilanges B. The emerging mechanisms of isoform-specific PI3K signalling. Nat Rev Mol Cell Biol 2010; 11:329-341
    [19] Taniguchi CM, Tran TT, Kondo T, Luo J, Ueki K, Cantley LC, et al. Phosphoinositide 3-kinase regulatory subunit p85 alpha suppresses insulin action via positive regulation of PTEN. Proc Natl Acad Sci U S A 2006; 103:12093-12097
    [20] Feng L, Xie XD, Ding QR, Luo XL, He J, Fan FJ, et al. Spatial regulation of Raf kinase signaling by RKTG. Proc Natl Acad Sci U S A 2007; 104:14348-14353
    [21] Yu X, Li Z, Chan MTV, Wu WKK. PAQR3:a novel tumor suppressor gene. Am J Cancer Res 2015; 5:2562-2568
    [22] Lei L, Ling ZN, Chen XL, Hong LL, Ling ZQ. Characterization of the Golgi scaffold protein PAQR3, and its role in tumor suppression and metabolic pathway compartmentalization. Cancer Manag Res 2020; 12:353-362
    [23] Chen L, Sun X, Xiao H, Xu F, Yang Y, Lin Z, et al. PAQR3 regulates phosphorylation of FoxO1 in insulin-resistant HepG2 cells via NF-kappa B signaling pathway. Exp Cell Res 2019; 381:301-310
    [24] Zou Y, Chen Z, Li J, Gong W, Zhang L, Xu F, et al. Progestin and AdipoQ receptor 3 upregulates fibronectin and intercellular adhesion molecule-1 in glomerular mesangial cells via activating NF-κB signaling pathway under high glucose conditions. Front Endocrinol (Lausanne) 2018;9:275
    [25] Wang LD, Wang X, Li ZH, Xia TT, Zhu L, Liu B, et al. PAQR3 has modulatory roles in obesity, energy metabolism, and leptin signaling. Endocrinology 2013; 154:4525-4535
    [26] Zhao ZL, Xu DQ, Wang Z, Wang L, Han RM, Wang ZZ, et al. Hepatic PPAR function is controlled by polyubiquitination and proteasome-mediated degradation through the coordinated actions of PAQR3 and HUWE1. Hepatology 2018; 68:289-303
    [27] Huang MQ, Zhao ZL, Cao QQ, You X, Wei SY, Zhao JY, et al. PAQR3 modulates blood cholesterol level by facilitating interaction between LDLR and PCSK9. Metabolism 2019; 94:88-95
    [28] Wang X, Wang LD, Zhu L, Pan Y, Xiao F, Liu WZ, et al. PAQR3 modulates insulin signaling by shunting phosphoinositide 3-kinase p110 alpha to the Golgi apparatus. Diabetes 2013; 62:444-456
    [29] Stoyanova T, Roy N, Kopanja D, Bagchi S, Raychaudhuri P. DDB2 decides cell fate following DNA damage. Proc Natl Acad Sci U S A 2009; 106:10690-10695
    [30] Yan YY, Zhang XS, Legerski RJ. Artemis interacts with the Cul4A-DDB1 (DDB2) ubiquitin E3 ligase and regulates degradation of the CDK inhibitor p27. Cell Cycle 2011; 10:4098-4109
    [31] Lai TC, Hu MC. Regulation of liver receptor homologue-1 by DDB2 E3 ligase activity is critical for hepatic glucose metabolism. Sci Rep 2019;9:5304
    [32] Qiao SS, Guo WW, Liao LJ, Wang L, Wang Z, Zhang R, et al. DDB2 is involved in ubiquitination and degradation of PAQR3 and regulates tumorigenesis of gastric cancer cells. Biochem J 2015; 469:469-480
    [33] Wu S, Ning Y, Zhao Y, Sun W, Thorimbert S, Dechoux L, et al. Research progress of natural product gentiopicroside-a secoiridoid compound. Mini Rev Med Chem 2017; 17:62-77
    [34] Li X, Zhang Y, Jin Q, Xia KL, Jiang M, Cui BW, et al. Liver kinase B1/AMP-activated protein kinase-mediated regulation by gentiopicroside ameliorates P2X7 receptor-dependent alcoholic hepatosteatosis. Br J Pharmacol 2018; 175:1451-1470
    [35] Jin MY, Feng HH, Wang Y, Yan SR, Shen BY, Li Z, et al. Gentiopicroside ameliorates oxidative stress and lipid accumulation through nuclear factor erythroid 2-related factor 2 activation. Oxid Med Cell Longev 2020; 2020:13
    [36] Lu Y, Yao J, Gong C, Wang B, Zhou P, Zhou S, et al. Gentiopicroside ameliorates diabetic peripheral neuropathy by modulating PPAR-Gamma/AMPK/ACC signaling pathway. Cell Physiol Biochem 2018; 50:585-596
    [37] Zhang X, Shi E, Yang L, Fu W, Hu F, Zhou X. Gentiopicroside attenuates diabetic retinopathy by inhibiting inflammation, oxidative stress, and NF-kappa B activation in rat model. Eur J Inflamm 2019; 17. Available from:https://doi.org/10.1177/2058739219847837
    [38] Xiao H, Sun X, Liu R, Chen Z, Lin Z, Yang Y, et al. Gentiopicroside activates the bile acid receptor Gpbar1 (TGR5) to repress NF-kappaB pathway and ameliorate diabetic nephropathy. Pharmacol Res 2020; 151. Available from:https://doi.org/10.1016/j.phrs.2019.104559
    [39] Chen Z, Sun X, Chen Q, Lan T, Huang K, Xiao H, et al. Connexin32 ameliorates renal fibrosis in diabetic mice by promoting K48-linked NADPH oxidase 4 polyubiquitination and degradation. Brit J Pharmacol 2020; 177:145-160
    [40] Han CC, Li YF, Zhang YW, Wang Y, Cui DQ, Luo TT, et al. Targeted inhibition of GRK2 kinase domain by CP-25 to reverse fibroblast-like synoviocytes dysfunction and improve collagen-induced arthritis in rats. Acta Pharm Sin B 2021; 11:1835-1852
    [41] Dziekan JM, Yu H, Chen D, Dai L, Wirjanata G, Larsson A, et al. Identifying purine nucleoside phosphorylase as the target of quinine using cellular thermal shift assay. Sci Transl Med 2019; 11:473
    [42] Gastaldelli A, Gaggini M, DeFronzo RA. Role of adipose tissue insulin resistance in the natural history of type 2 diabetes:results from the san antonio metabolism sudy. Diabetes 2017; 66:815-822
    [43] Posey KA, Clegg DJ, Printz RL, Byun J, Morton GJ, Vivekanandan-Giri A, et al. Hypothalamic proinflammatory lipid accumulation, inflammation, and insulin resistance in rats fed a high-fat diet. Am J Physiol Endocrinol Metab 2009; 296:E1003-E1012
    [44] Gao D, Nong S, Huang X, Lu Y, Zhao H, Lin Y, et al. The effects of palmitate on hepatic insulin resistance are mediated by NADPH oxidase 3-derived reactive oxygen species through JNK and p38 (MAPK) pathways. J Biol Chem 2010; 285:29965-29973
    [45] Li JY, Wang QE, Zhu QZ, El-Mahdy MA, Wani G, Praetorius-Ibba M, et al. DNA damage binding protein component DDB1 participates in nucleotide excision repair through DDB2 DNA-binding and cullin 4A ubiquitin ligase activity. Cancer Res 2006; 66:8590-8597
    [46] Hoehn KL, Salmon AB, Hohnen-Behrens C, Turner N, Hoy AJ, Maghzal GJ, et al. Insulin resistance is a cellular antioxidant defense mechanism. Proc Natl Acad Sci U S A 2009; 106:17787-17792
    [47] Gastaldelli A, Stefan N, Haering HU. Liver-targeting drugs and their effect on blood glucose and hepatic lipids. Diabetologia 2021; 64:1461-1479
    [48] Friedman SL, Neuschwander-Tetri BA, Rinella M, Sanyal AJ. Mechanisms of NAFLD development and therapeutic strategies. Nat Med 2018; 24:908-922
    [49] Yang HX, Shang Y, Jin Q, Wu YL, Liu J, Qiao CY, et al. Gentiopicroside ameliorates the progression from hepatic steatosis to fibrosis induced by chronic alcohol intake. Biomol Ther (Seoul) 2020; 28:320-327
    [50] Tang XW, Yang QL, Yang F, Gong JT, Han H, Yang L, et al. Target profiling analyses of bile acids in the evaluation of hepatoprotective effect of gentiopicroside on ANIT-induced cholestatic liver injury in mice. J Ethnopharmacol 2016; 194:63-71
    [51] Dai K, Yi XJ, Huang XJ, Muhammad A, Li M, Li J, et al. Hepatoprotective activity of iridoids, seco-iridoids and analog glycosides from gentianaceae on HepG2 cells via CYP3A4 induction and mitochondrial pathway. Food Funct 2018; 9:2673-2683
    [52] Han H, Xu L, Xiong K, Zhang T, Wang Z. Exploration of hepatoprotective effect of gentiopicroside on alpha-naphthylisothiocyanate-induced cholestatic liver injury in rats by comprehensive proteomic and metabolomic signatures. Cell Physiol Biochem 2018; 49:1304-1319
    [53] Srinivasan K, Viswanad B, Asrat L, Kaul CL, Ramarao P. Combination of high-fat diet-fed and low-dose streptozotocin-treated rat:a model for type 2 diabetes and pharmacological screening. Pharmacol Res 2005; 52:313-320
    [54] Madiraju AK, Erion DM, Rahimi Y, Zhang XM, Braddock DT, Albright RA, et al. Metformin suppresses gluconeogenesis by inhibiting mitochondrial glycerophosphate dehydrogenase. Nature 2014; 510:542-546
    [55] Huang XJ, Liu GH, Guo J, Su ZQ. The PI3K/AKT pathway in obesity and type 2 diabetes. Int J Biol Sci 2018; 14:1483-1496
    [56] Vanhaesebroeck B, Whitehead MA, Pineiro R. Molecules in medicine mini-review:isoforms of PI3K in biology and disease. J Mol Med (Berl) 2016; 94:5-11
    [57] Xu D, Wang Z, Zhang Y, Jiang W, Pan Y, Song BL, Chen Y. PAQR3 modulates cholesterol homeostasis by anchoring Scap/SREBP complex to the Golgi apparatus. Nat Commun 2015;6:8100
    [58] Xu DQ, Wang Z, Wang CY, Zhang DY, Wan HD, Zhao ZL, et al. PAQR3 controls autophagy by integrating AMPK signaling to enhance ATG14L-associated PI3K activity. EMBO J 2016; 35:496-514
  • 加载中
计量
  • 文章访问数:  46
  • HTML全文浏览量:  27
  • PDF下载量:  0
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-09-18
  • 修回日期:  2021-11-08
  • 录用日期:  2021-11-10
  • 网络出版日期:  2023-03-17

目录

    /

    返回文章
    返回