留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Cytochrome P450s in algae: Bioactive natural product biosynthesis and light-driven bioproduction

Shanmin Zheng Jiawei Guo Fangyuan Cheng Zhengquan Gao Lei Du Chunxiao Meng Shengying Li Xingwang Zhang

Shanmin Zheng, Jiawei Guo, Fangyuan Cheng, Zhengquan Gao, Lei Du, Chunxiao Meng, Shengying Li, Xingwang Zhang. Cytochrome P450s in algae: Bioactive natural product biosynthesis and light-driven bioproduction[J]. 机械工程学报. doi: 10.1016/j.apsb.2022.01.013
引用本文: Shanmin Zheng, Jiawei Guo, Fangyuan Cheng, Zhengquan Gao, Lei Du, Chunxiao Meng, Shengying Li, Xingwang Zhang. Cytochrome P450s in algae: Bioactive natural product biosynthesis and light-driven bioproduction[J]. 机械工程学报. doi: 10.1016/j.apsb.2022.01.013
Shanmin Zheng, Jiawei Guo, Fangyuan Cheng, Zhengquan Gao, Lei Du, Chunxiao Meng, Shengying Li, Xingwang Zhang. Cytochrome P450s in algae: Bioactive natural product biosynthesis and light-driven bioproduction[J]. JOURNAL OF MECHANICAL ENGINEERING. doi: 10.1016/j.apsb.2022.01.013
Citation: Shanmin Zheng, Jiawei Guo, Fangyuan Cheng, Zhengquan Gao, Lei Du, Chunxiao Meng, Shengying Li, Xingwang Zhang. Cytochrome P450s in algae: Bioactive natural product biosynthesis and light-driven bioproduction[J]. JOURNAL OF MECHANICAL ENGINEERING. doi: 10.1016/j.apsb.2022.01.013

Cytochrome P450s in algae: Bioactive natural product biosynthesis and light-driven bioproduction

doi: 10.1016/j.apsb.2022.01.013
基金项目: 

This work was supported by the National Key Research and Development Program of China (2020YFA0907900), the National Natural Science Foundation of China (32000039, 32025001, 31972815 and 42176124), the Natural Science Foundation of Shandong Province (ZR2019ZD20, ZR2019ZD17 and ZR2020ZD23), the Fundamental Research Funds of Shandong University (2019GN031), and the Scientific Research Fund of Binzhou Medical University (BY2021KYQD25).

详细信息
    通讯作者:

    Chunxiao Meng,E-mail:mengchunxiao@126.com

    Shengying Li,E-mail:lishengying@sdu.edu.cn

    Xingwang Zhang,E-mail:zhangxingwang@sdu.edu.cn

  • 中图分类号: https://www.sciencedirect.com/science/article/pii/S2211383522000260/pdf?md5=d17c64b25edcb6ee7d080a20255823a1&pid=1-s2.0-S2211383522000260-main.pdf

Cytochrome P450s in algae: Bioactive natural product biosynthesis and light-driven bioproduction

Funds: 

This work was supported by the National Key Research and Development Program of China (2020YFA0907900), the National Natural Science Foundation of China (32000039, 32025001, 31972815 and 42176124), the Natural Science Foundation of Shandong Province (ZR2019ZD20, ZR2019ZD17 and ZR2020ZD23), the Fundamental Research Funds of Shandong University (2019GN031), and the Scientific Research Fund of Binzhou Medical University (BY2021KYQD25).

  • 摘要: Algae are a large group of photosynthetic organisms responsible for approximately half of the earth's total photosynthesis. In addition to their fundamental ecological roles as oxygen producers and as the food base for almost all aquatic life, algae are also a rich source of bioactive natural products, including several clinical drugs. Cytochrome P450 enzymes (P450s) are a superfamily of biocatalysts that are extensively involved in natural product biosynthesis by mediating various types of reactions. In the post-genome era, a growing number of P450 genes have been discovered from algae, indicating their important roles in algal life-cycle. However, the functional studies of algal P450s remain limited. Benefitting from the recent technical advances in algae cultivation and genetic manipulation, the researches on P450s in algal natural product biosynthesis have been approaching to a new stage. Moreover, some photoautotrophic algae have been developed into “photo-bioreactors” for heterologous P450s to produce high-value added pharmaceuticals and chemicals in a carbon-neutral or carbon-negative manner. Here, we comprehensively review these advances of P450 studies in algae from 2000 to 2021.

     

  • [1] Nelson DR. Cytochrome P450 diversity in the tree of life. BBA-Proteins Proteom 2018;1866:141-154
    [2] Montellano PROD. Cytochrome P450-structure, mechanism, and biochemistry. 4th ed. Switzerland:Springer; 2015
    [3] Zhang X, Li S. Expansion of chemical space for natural products by uncommon P450 reactions. Nat Prod Rep 2017;34:1061-1089
    [4] Zhang X, Guo J, Cheng F, Li S. Cytochrome P450 enzymes in fungal natural product biosynthesis. Nat Prod Rep 2021;38:1047-1228
    [5] Robert FO, Pandhal J, Wright PC. Exploiting cyanobacterial P450 pathways. Curr Opin Microbiol 2010;13:301-306
    [6] Sherman DH, Li S, Yermalitskaya LV, Kim Y, Smith JA, Waterman MR, et al. The structural basis for substrate anchoring, active site selectivity, and product formation by P450 PikC from Streptomyces venezuelae. J Biol Chem 2006;281:26289-26297
    [7] Cryle MJ, Schlichting I. Structural insights from a P450 Carrier Protein complex reveal how specificity is achieved in the P450(BioI) ACP complex. Proc Natl Acad Sci U S A 2008;105:15696-15701
    [8] Kittendorf JD, Sherman DH. The methymycin/pikromycin pathway:a model for metabolic diversity in natural product biosynthesis. Bioorg Med Chem 2009;17:2137-2146
    [9] Murphy CD. Drug metabolism in microorganisms. Biotechnol Lett 2015;37:19-28
    [10] Theis T, Backhaus T, Bossmann B, Grimme L. Xenobiotic biotransformation in unicellular green algae. Involvement of cytochrome P450 in the activation and selectivity of the pyridazinone pro-herbicide metflurazon. Plant Physiol 1996;112:361-370
    [11] Wrighton SA, Stevens JC. The human hepatic cytochromes P450 involved in drug metabolism. Crit Rev Toxicol 1992;22:1-21
    [12] Rudolf JD, Chang CY, Ma M, Shen B. Cytochromes P450 for natural product biosynthesis in streptomyces:sequence, structure, and function. Nat Prod Rep 2017;34:1141-1172
    [13] Hansen CC, Nelson DR, Moeller BL, Werck-Reichhart D. Plant cytochrome P450 plasticity and evolution. Mol Plant 2021;14:1244-1265
    [14] Riddick DS, Ding X, Wolf CR, Porter TD, Pandey AV, Zhang QY, et al. NADPH-cytochrome P450 oxidoreductase:roles in physiology, pharmacology, and toxicology. Drug Metab Dispos 2013;41:12-23
    [15] Montellano PROD, Vossb JJD. Oxidizing species in the mechanism of cytochrome P450. Nat Prod Rep 2002;19:477-493
    [16] Guengerich FP. Mechanisms of cytochrome P450 substrate oxidation:MiniReview. J Biochem Mol Toxicol 2010;21:163-168
    [17] Ahmed RA, He M, Aftab RA, Zheng S, Nagi M, Bakri R, et al. Bioenergy application of Dunaliella salina SA 134 grown at various salinity levels for lipid production. Sci Rep-UK 2017;7:8118-8127
    [18] Shi Y, Jiang Z, Hu X, Hu X, Gu R, Jiang B, et al. The cytochrome P450 catalyzing C-S bond formation in S-heterocyclization of chuangxinmycin biosynthesis. Angew Chem Int Ed Engl 2021;60:15399-15404
    [19] Zhang X, Xu X, You C, Yang C, Guo J, Sang M, et al. Biosynthesis of chuangxinmycin featuring a deubiquitinase-like sulfurtransferase. Angew Chem Int Ed Engl 2021;60:24418-24423
    [20] Morita I, Mori T, Mitsuhashi T, Hoshino S, Taniguchi Y, Kikuchi T, et al. Exploiting a C-N bond forming cytochrome P450 monooxygenase for C-S bond formation. Angew Chem Int Ed Engl 2020;59:3988-3993
    [21] Grogan G. Hemoprotein catalyzed oxygenations:P450s, UPOs, and progress toward scalable reactions. JACS Au 2021;1:1312-1329
    [22] Dixit RB, Suseela MR. Cyanobacteria:potential candidates for drug discovery. Anton Leeuw Int J G 2013;103:947-961
    [23] Harel Y, Ohad I, Kaplan A. Activation of photosynthesis and resistance to photoinhibition in cyanobacteria within biological desert crust. Plant Physiol 2004;136:3070-3079
    [24] Radmer RJ. Algal diversity and commercial algal products. Bioscience 1996;46:263-270
    [25] O'Neill E. Mining natural product biosynthesis in eukaryotic algae. Mar Drugs 2020;18:1-16
    [26] Kehr JC, Gatte Picchi D, Dittmann E. Natural product biosyntheses in cyanobacteria:a treasure trove of unique enzymes. Beilstein J Org Chem 2011;7:1622-1635
    [27] O'Neill EC, Saalbach G, Field RA. Gene discovery for synthetic biology:exploring the novel natural product biosynthetic capacity of eukaryotic microalgae. Methods Enzymol 2016;576:99-120
    [28] Teng L, Fan X, Nelson DR, Han W, Zhang X, Xu D, et al. Diversity and evolution of cytochromes P450 in stramenopiles. Planta 2019;249:647-661
    [29] Lu J, Shao Y, Qin X, Liu D, Chen A, Li D, et al. CRISPR knockout rat cytochrome P450 3A1/2 model for advancing drug metabolism and pharmacokinetics research. Sci Rep-UK 2017;7:42922-42935
    [30] Kim SY, Zhao P, Igarashi M, Sawa R, Tomita T, Nishiyama M, et al. Cloning and heterologous expression of the cyclooctatin biosynthetic gene cluster afford a diterpene cyclase and two p450 hydroxylases. Chem Biol 2009;16:736-743
    [31] Lassen LM, Nielsen AZ, Ziersen B, Gnanasekaran T, Moller BL, Jensen PE. Redirecting photosynthetic electron flow into light-driven synthesis of alternative products including high-value bioactive natural compounds. ACS Synth Biol 2014;3:1-12
    [32] Meunier B, de Visser SP, Shaik S. Mechanism of oxidation reactions catalyzed by cytochrome p450 enzymes. Chem Rev 2004;104:3947-3980
    [33] Paine MJ, Scrutton NS, Munro AW, Gutierrez A, Roberts GC, Wolf CR. Electron transfer partners of cytochrome P450. In:Cytochrome P450-structure, mechanism, and biochemistry. Boston:Springer; 2005. p. 115-148
    [34] Montellano PROD. Cytochrome P450:structure, mechanism, and biochemistry. 3rd ed. New York:Springer; 2005
    [35] Hausjell J, Halbwirth H, Spadiut O. Recombinant production of eukaryotic cytochrome P450s in microbial cell factories. Biosci Rep 2018;38:1290-1302
    [36] Podust LM, Sherman DH. Diversity of P450 enzymes in the biosynthesis of natural products. Nat Prod Rep 2012;29:1251-1266
    [37] Jiang Y, Li S. Catalytic function and application of cytochrome P450 enzymes in biosynthesis and organic synthesis. Chin J Org Chem 2018;38:2307-2323
    [38] Brash AR. Mechanistic aspects of CYP74 allene oxide synthases and related cytochrome P450 enzymes. Phytochemistry 2009;70:1522-1531
    [39] Lawton LA, Codd GA. Cyanobacterial (blue-green-algal) toxins and their significance in UK and european waters. Water Environ J 1991;5:460-465
    [40] Dixit RB, Suseela MR. Cyanobacteria:potential candidates for drug discovery. Anton Leeuw Int J G 2013;103:947-961
    [41] Khumalo MJ, Nzuza N, Padayachee T, Chen W, Yu JH, Nelson DR, et al. Comprehensive analyses of cytochrome P450 monooxygenases and secondary metabolite biosynthetic gene clusters in cyanobacteria. Int J Mol Sci 2020;21:656-671
    [42] Napoli JL. Physiological insights into all-trans-retinoic acid biosynthesis. Bba-Mol Cell Biol L 2012;1821:152-167
    [43] Idres N, Marill J, Flexor MA, Chabot GG. Activation of retinoic acid receptor-dependent transcription by all-trans-retinoic acid metabolites and isomers. J Biol Chem 2002;277:31491-31498
    [44] Ke N, Baudry J, Makris TM, Schuler MA, Sligar SG. A retinoic acid binding cytochrome P450:CYP120A1 from Synechocystis sp. PCC 6803. Arch Biochem Biophys 2005;436:110-120
    [45] Kuhnel K, Ke N, Cryle MJ, Sligar SG, Schuler MA, Schlichting I. Crystal structures of substrate-free and retinoic acid-bound cyanobacterial cytochrome P450 CYP120A1. Biochemistry 2008;47:6552-6559
    [46] Alder A, Bigler P, Werck-Reichhart D, Al-Babili S. In vitro characterization of Synechocystis CYP120A1 revealed the first nonanimal retinoic acid hydroxylase. FEBS J 2009;276:5416-5431
    [47] Richard DA, Joseph J. Barchi Jr, Masayuki Kuniyoshi, Richard E. Moore, Mynderse JS. Structure of malyngamide C. J Org Chem 1985;50:2859-2862
    [48] Moss NA, Leao T, Rankin MR, McCullough TM, Qu P, Korobeynikov A, et al. Ketoreductase domain dysfunction expands chemodiversity:malyngamide biosynthesis in the cyanobacterium Okeania hirsuta. ACS Chem Biol 2018;13:3385-3395
    [49] Magarvey NA, Beck ZQ, Golakoti T, Ding Y, Huber U, Hemscheidt TK, et al. Biosynthetic characterization and chemoenzymatic assembly of the cryptophycins. Potent anticancer agents from Nostoc cyanobionts. ACS Chem Biol 2006;1:766-779
    [50] Smith CD, Zhang XQ, Mooberry SL, Patterson GML, Moore RE. Cryptophycin-a new antimicrotubule agent active against drug-resistant cells. Cancer Res 1994;54:3779-3784
    [51] Subbaraju GV, Golakoti T, Patterson GM, Moore RE. Three new cryptophycins from Nostoc sp. GSV 224. J Nat Prod 1997;60:302-305
    [52] Ding Y, Seufert WH, Beck ZQ, Sherman DH. Analysis of the cryptophycin P450 epoxidase reveals substrate tolerance and cooperativity. J Am Chem Soc 2008;130:5492-5498
    [53] Ramaswamy AV, Sorrels CM, Gerwick WH. Cloning and biochemical characterization of the hectochlorin biosynthetic gene cluster from the marine cyanobacterium Lyngbya majuscula. J Nat Prod 2007;70:1977-1986
    [54] Liu X, Sheng J, Curtiss R, 3rd. Fatty acid production in genetically modified cyanobacteria. Proc Natl Acad Sci U S A 2011;108:6899-6904
    [55] Jiang YY, Li Z, Wang C, Zhou YJJ, Xu HF, Li SY. Biochemical characterization of three new alpha-olefin-producing P450 fatty acid decarboxylases with a halophilic property. Biotechnol Biofuels 2019;12:1-14
    [56] Schneider S, Wu Bb Olts MG, Sanglard D, Witholt B. Biocatalyst engineering by assembly of fatty acid transport and oxidation activities for in vivo application of cytochrome P-450BM-3 monooxygenase. Appl Environ Microbiol 1998;64:3784-3790
    [57] Lammers PJ, McLaughlin S, Papin S, Trujillo-Provencio C, Ryncarz AJ, 2nd. Developmental rearrangement of cyanobacterial nif genes:nucleotide sequence, open reading frames, and cytochrome P-450 homology of the Anabaena sp. strain PCC 7120 nifD element. J Bacteriol 1990;172:6981-6990
    [58] Torres S, Fjetland CR, Lammers PJ. Alkane-induced expression, substrate binding profile, and immunolocalization of a cytochrome P450 encoded on the nifD excision element of Anabaena 7120. BMC Microbiol 2005;5:5-16
    [59] Van den Berg M, Birnbaum L, Bosveld AT, Brunstrom B, Cook P, Feeley M, et al. Toxic equivalency factors (TEFs) for PCBs, PCDDs, PCDFs for humans and wildlife. Environ Health Perspect 1998;106:775-792
    [60] Duell ER, Milzarek TM, El Omari M, Linares-Otoya LJ, Schaberle TF, Konig GM, et al. Identification, cloning, expression and functional interrogation of the biosynthetic pathway of the polychlorinated triphenyls ambigol A-C from Fischerella ambigua 108b. Org Chem Front 2020;7:3193-3201
    [61] Agarwal V, El Gamal AA, Yamanaka K, Poth D, Kersten RD, Schorn M, et al. Biosynthesis of polybrominated aromatic organic compounds by marine bacteria. Nat Chem Biol 2014;10:640-647
    [62] Bouwmeester HJ, Kodde J, Verstappen FW, Altug IG, de Kraker JW, Wallaart TE. Isolation and characterization of two germacrene A synthase cDNA clones from chicory. Plant Physiol 2002;129:134-144
    [63] Agger SA, Lopez-Gallego F, Hoye TR, Schmidt-Dannert C. Identification of sesquiterpene synthases from Nostoc punctiforme PCC 73102 and Nostoc sp. strain PCC 7120. J Bacteriol 2008;190:6084-6096
    [64] Harada H, Shindo K, Iki K, Teraoka A, Okamoto S, Yu F, et al. Efficient functional analysis system for cyanobacterial or plant cytochromes P450 involved in sesquiterpene biosynthesis. Appl Microbiol Biotechnol 2011;90:467-476
    [65] Irie K, Hirota M, Hagiwara N, Koshimizu K, Hayashi H, Murao S, et al. The Epstein-Barr virus early antigen inducing indole alkaloids, (-)-indolactam V and its related compounds, produced by actinomycetes. Agric Biol Chem 2014;48:1269-1274
    [66] Huynh MU, Elston MC, Hernandez NM, Ball DB, Kajiyama S, Irie K, et al. Enzymatic production of (-)-indolactam V by LtxB, a cytochrome P450 monooxygenase. J Nat Prod 2010;73:71-74
    [67] Hiraoka M, Shimada S, Uenosono M, Masuda M. A new green-tide-forming alga, Ulva ohnoi Hiraoka et Shimada sp. nov.(Ulvales, Ulvophyceae) from Japan. Phycol Res 2004;52:17-29
    [68] Horner RA, Garrison DL, Plumley FG. Harmful algal blooms and red tide problems on the US west coast. Limnol Oceanogr 1997;42:1076-1088
    [69] Wang BG, Gloer JB, Ji NY, Zhao JC. Halogenated organic molecules of Rhodomelaceae origin:chemistry and biology. Chem Rev 2013;113:3632-3685
    [70] Wei X, Hu H, Tong H, Gmitter FG. Profiles of gene family members related to carotenoid accumulation in citrus genus. J Plant Biol 2017;60:1-10
    [71] Gauthier ML, Pickering CR, Miller CJ, Fordyce CA, Chew KL, Berman HK, et al. p38 regulates cyclooxygenase-2 in human mammary epithelial cells and is activated in premalignant tissue. Cancer Res 2005;65:1792-1799
    [72] Stumpe M, Feussner I. Formation of oxylipins by CYP74 enzymes. Phytochemistry Rev 2006;5:347-357
    [73] Ohta D, Mizutani M. Redundancy or flexibility:molecular diversity of the electron transfer components for P450 monooxygenases in higher plants. Front Biosci 2004;9:1587-1597
    [74] Koeduka T, Ishizaki K, Mwenda CM, Hori K, Sasaki-Sekimoto Y, Ohta H, et al. Biochemical characterization of allene oxide synthases from the liverwort Marchantia polymorpha and green microalgae Klebsormidium flaccidum provides insight into the evolutionary divergence of the plant CYP74 family. Planta 2015;242:1175-1186
    [75] Toporkova YY, Fatykhova VS, Gogolev YV, Khairutdinov BI, Mukhtarova LS, Grechkin AN. Epoxyalcohol synthase of Ectocarpus siliculosus. First CYP74-related enzyme of oxylipin biosynthesis in brown algae. Bba-Mol Cell Biol L 2017;1862:167-175
    [76] Ritter A, Dittami SM, Goulitquer S, Correa JA, Boyen C, Potin P, et al. Transcriptomic and metabolomic analysis of copper stress acclimation in Ectocarpus siliculosus highlights signaling and tolerance mechanisms in brown algae. BMC Plant Biol 2014;14:116-132
    [77] Dall'Osto L, Fiore A, Cazzaniga S, Giuliano G, Bassi R. Different roles of alpha- and beta-branch xanthophylls in photosystem assembly and photoprotection. J Biol Chem 2007;282:35056-35068
    [78] Cui H, Yu X, Wang Y, Cui Y, Li X, Liu Z, et al. Evolutionary origins, molecular cloning and expression of carotenoid hydroxylases in eukaryotic photosynthetic algae. BMC Genom 2013;14:457-476
    [79] Liang MH, Zhu J, Jiang JG. Carotenoids biosynthesis and cleavage related genes from bacteria to plants. Crit Rev Food Sci Nutr 2018;58:2314-2333
    [80] Liang MH, Xie H, Chen HH, Liang ZC, Jiang JG. Functional identification of two types of carotene hydroxylases from the green alga Dunaliella bardawil rich in lutein. ACS Synth Biol 2020;9:1246-1253
    [81] Tamaki S, Kato S, Shinomura T, Ishikawa T, Imaishi H. Physiological role of beta-carotene monohydroxylase (CYP97H1) in carotenoid biosynthesis in Euglena gracilis. Plant Sci 2019;278:80-87
    [82] Qi X, Bakht S, Qin B, Leggett M, Hemmings A, Mellon F, et al. A different function for a member of an ancient and highly conserved cytochrome P450 family:from essential sterols to plant defense. Proc Natl Acad Sci U S A 2006;103:18848-18853
    [83] Lamb DC, Kelly DE, Kelly SL. Molecular diversity of sterol 14alpha-demethylase substrates in plants, fungi and humans. FEBS Lett 1998;425:263-265
    [84] Lu Y, Zhou W, Wei L, Li J, Jia J, Li F, et al. Regulation of the cholesterol biosynthetic pathway and its integration with fatty acid biosynthesis in the oleaginous microalga Nannochloropsis oceanica. Biotechnol Biofuels 2014;7:81-95
    [85] Topletz AR, Thatcher JE, Zelter A, Lutz JD, Tay S, Nelson WL, et al. Comparison of the function and expression of CYP26A1 and CYP26B1, the two retinoic acid hydroxylases. Biochem Pharmacol 2012;83:149-163
    [86] He F, Mori T, Morita I, Nakamura H, Alblova M, Hoshino S, et al. Molecular basis for the P450-catalyzed C-N bond formation in indolactam biosynthesis. Nat Chem Biol 2019;15:1206-1213
    [87] Lee DS, Nioche P, Hamberg M, Raman CS. Structural insights into the evolutionary paths of oxylipin biosynthetic enzymes. Nature 2008;455:363-368
    [88] Melis A. Solar energy conversion efficiencies in photosynthesis:minimizing the chlorophyll antennae to maximize efficiency. Plant Sci 2009;177:272-280
    [89] Santos-Merino M, Torrado A, Davis GA, Rottig A, Bibby TS, Kramer DM, et al. Improved photosynthetic capacity and photosystem I oxidation via heterologous metabolism engineering in cyanobacteria. Proc Natl Acad Sci U S A 2021;118:1-9
    [90] Mellor SB, Vinde MH, Nielsen AZ, Hanke GT, Abdiaziz K, Roessler MM, et al. Defining optimal electron transfer partners for light-driven cytochrome P450 reactions. Metab Eng 2019;55:33-43
    [91] Xue Y, Zhang Y, Grace S, He Q. Functional expression of an Arabidopsis p450 enzyme, p-coumarate-3-hydroxylase, in the cyanobacterium Synechocystis PCC 6803 for the biosynthesis of caffeic acid. J Appl Phycol 2013;26:219-226
    [92] Xue Y, He Q. Cyanobacteria as cell factories to produce plant secondary metabolites. Front Bioeng Biotechnol 2015;3:57-62
    [93] Lassen LM, Nielsen AZ, Olsen CE, Bialek W, Jensen K, Moller BL, et al. Anchoring a plant cytochrome P450 via PsaM to the thylakoids in Synechococcus sp. PCC 7002:evidence for light-driven biosynthesis. PLoS One 2014;9:1-10
    [94] Gangl D, Zedler JA, Wlodarczyk A, Jensen PE, Purton S, Robinson C. Expression and membrane-targeting of an active plant cytochrome P450 in the chloroplast of the green alga Chlamydomonas reinhardtii. Phytochemistry 2015;110:22-28
    [95] Wlodarczyk A, Gnanasekaran T, Nielsen AZ, Zulu NN, Mellor SB, Luckner M, et al. Metabolic engineering of light-driven cytochrome P450 dependent pathways into Synechocystis sp. PCC 6803. Metab Eng 2016;33:1-11
    [96] Hoschek A, Heuschkel I, Schmid A, Buhler B, Karande R, Buhler K. Mixed-species biofilms for high-cell-density application of Synechocystis sp. PCC 6803 in capillary reactors for continuous cyclohexane oxidation to cyclohexanol. Bioresour Technol 2019;282:171-178
    [97] Gulin I. Antioxidant activity of caffeic acid (3,4-dihydroxycinnamic acid). Toxicology 2006;217:213-220
    [98] Prasad NR, Karthikeyan A, Karthikeyan S, Reddy BV. Inhibitory effect of caffeic acid on cancer cell proliferation by oxidative mechanism in human HT-1080 fibrosarcoma cell line. Mol Cell Biochem 2011;349:11-19
    [99] Chao PC, Hsu C, Yin MC. Anti-inflammatory and anti-coagulatory activities of caffeic acid and ellagic acid in cardiac tissue of diabetic mice. Nutr Metab 2009;6:33
    [100] Yoshimoto M, Kurata-Azuma R, Fujii M, Hou DX, Ikeda K, Yoshidome T, et al. Enzymatic production of caffeic acid by koji from plant resources containing caffeoylquinic acid derivatives. Biosci Biotechnol Biochem 2005;69:1777-1781
    [101] Kim YH, Kwon T, Yang HJ, Kim W, Youn H, Lee JY, et al. Gene engineering, purification, crystallization and preliminary X-ray diffraction of cytochrome P450 p-coumarate-3-hydroxylase (C3H), the Arabidopsis membrane protein. Protein Expr Purif 2011;79:149-155
    [102] Sibbesen O, Koch B, Halkier BA, Moller BL. Isolation of the heme-thiolate enzyme cytochrome P-450TYR, which catalyzes the committed step in the biosynthesis of the cyanogenic glucoside dhurrin in Sorghum bicolor (L.) Moench. Proc Natl Acad Sci U S A 1994;91:9740-9744
    [103] Schuchardt U, Carvalho WA, Spinace E. Why is it interesting to study cyclohexane oxidation?. Synlett 1993;1993:713-718
    [104] Schuchardt U, Cardoso D, Sercheli R, Pereira R, Cruz RSd, Guerreiro MC, et al. Cyclohexane oxidation continues to be a challenge. Appl Catal A-Gen 2001;211:1-17
    [105] Salamanca D, Karande R, Schmid A, Dobslaw D. Novel cyclohexane monooxygenase from Acidovorax sp. CHX100. Appl Microbiol Biotechnol 2015;99:6889-6897
    [106] Hoschek A, Toepel J, Hochkeppel A, Karande R, Buhler B, Schmid A. Light-dependent and aeration-independent gram-scale hydroxylation of cyclohexane to cyclohexanol by CYP450 harboring Synechocystis sp. PCC 6803. Biotechnol J 2019;14:724-733
    [107] Berepiki A, Hitchcock A, Moore CM, Bibby TS. Tapping the unused potential of photosynthesis with a heterologous electron sink. ACS Synth Biol 2016;5:1369-1375
    [108] Kawahigashi H, Hirose S, Ohkawa H, Ohkawa Y. Transgenic rice plants expressing human CYP1A1 remediate the triazine herbicides atrazine and simazine. J Agric Food Chem 2005;53:8557-8564
    [109] Inui H, Shiota N, Motoi Y, Ido Y, Inoue T, Kodama T, et al. Metabolism of herbicides and other chemicals in human cytochrome P450 species and in transgenic potato plants co-expressing human CYP1A1, CYP2B6 and CYP2C19. J Pestic Sci 2001;26:28-40
    [110] Mellor SB, Nielsen AZ, Burow M, Motawia MS, Jakubauskas D, Moller BL, et al. Fusion of ferredoxin and cytochrome P450 enables direct light-driven biosynthesis. ACS Chem Biol 2016;11:1862-1869
    [111] Kannchen D, Zabret J, Oworah-Nkruma R, Dyczmons-Nowaczyk N, Wiegand K, Lobbert P, et al. Remodeling of photosynthetic electron transport in Synechocystis sp. PCC 6803 for future hydrogen production from water. BBA-Bioenergetics 2020;1861:148208-148218
    [112] Cui H, Yu X, Wang Y, Cui Y, Li X, Liu Z, et al. Gene cloning and expression profile of a novel carotenoid hydroxylase (CYP97C) from the green alga Haematococcus pluvialis. J Appl Phycol 2013;26:91-103
    [113] Yang LE, Huang XQ, Hang Y, Deng YY, Lu QQ, Lu S. The P450-type carotene hydroxylase PuCHY1 from Porphyra suggests the evolution of carotenoid metabolism in red algae. J Integr Plant Biol 2014;56:902-915
    [114] Cui H, Ma H, Cui Y, Zhu X, Qin S, Li R. Cloning, identification and functional characterization of two cytochrome P450 carotenoids hydroxylases from the diatom Phaeodactylum tricornutum. J Biosci Bioeng 2019;128:755-765
  • 加载中
计量
  • 文章访问数:  46
  • HTML全文浏览量:  32
  • PDF下载量:  0
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-11-08
  • 修回日期:  2022-01-05
  • 录用日期:  2022-01-17
  • 网络出版日期:  2023-03-17

目录

    /

    返回文章
    返回