留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Mitochondria targeting drugs for neurodegenerative diseases—Design, mechanism and application

Jiajia Xu Wei Du Yunhe Zhao Kahleong Lim Li Lu Chengwu Zhang Lin Li

Jiajia Xu, Wei Du, Yunhe Zhao, Kahleong Lim, Li Lu, Chengwu Zhang, Lin Li. Mitochondria targeting drugs for neurodegenerative diseases—Design, mechanism and application[J]. 机械工程学报. doi: 10.1016/j.apsb.2022.03.001
引用本文: Jiajia Xu, Wei Du, Yunhe Zhao, Kahleong Lim, Li Lu, Chengwu Zhang, Lin Li. Mitochondria targeting drugs for neurodegenerative diseases—Design, mechanism and application[J]. 机械工程学报. doi: 10.1016/j.apsb.2022.03.001
Jiajia Xu, Wei Du, Yunhe Zhao, Kahleong Lim, Li Lu, Chengwu Zhang, Lin Li. Mitochondria targeting drugs for neurodegenerative diseases—Design, mechanism and application[J]. JOURNAL OF MECHANICAL ENGINEERING. doi: 10.1016/j.apsb.2022.03.001
Citation: Jiajia Xu, Wei Du, Yunhe Zhao, Kahleong Lim, Li Lu, Chengwu Zhang, Lin Li. Mitochondria targeting drugs for neurodegenerative diseases—Design, mechanism and application[J]. JOURNAL OF MECHANICAL ENGINEERING. doi: 10.1016/j.apsb.2022.03.001

Mitochondria targeting drugs for neurodegenerative diseases—Design, mechanism and application

doi: 10.1016/j.apsb.2022.03.001
基金项目: 

This study was supported by the National Key R&

D Program of China (2020YFA0709900), the National Natural Science Foundation of China (22077101), China-Sweden Joint Mobility Project (51811530018, China) and Postdoctoral Research Funding Schemes of Jiangsu Province (2021, China).

详细信息
    通讯作者:

    Li Lu,E-mail:luli@sxmu.edu.cn

    Chengwu Zhang,E-mail:chengwu_zhang@sxmu.edu.cn

    Lin Li,E-mail:iamlli@njtech.edu.cn

  • 中图分类号: https://www.sciencedirect.com/science/article/pii/S2211383522001009/pdf?md5=1ab20ef302d935d4c255ed5070821f49&pid=1-s2.0-S2211383522001009-main.pdf

Mitochondria targeting drugs for neurodegenerative diseases—Design, mechanism and application

Funds: 

This study was supported by the National Key R&

D Program of China (2020YFA0709900), the National Natural Science Foundation of China (22077101), China-Sweden Joint Mobility Project (51811530018, China) and Postdoctoral Research Funding Schemes of Jiangsu Province (2021, China).

  • 摘要: Neurodegenerative diseases (NDDs) such as Alzheimer's disease (AD) and Parkinson's disease (PD) are a heterogeneous group of disorders characterized by progressive degeneration of neurons. NDDs threaten the lives of millions of people worldwide and regretfully remain incurable. It is well accepted that dysfunction of mitochondria underlies the pathogenesis of NDDs. Dysfunction of mitochondria results in energy depletion, oxidative stress, calcium overloading, caspases activation, which dominates the neuronal death of NDDs. Therefore, mitochondria are the preferred target for intervention of NDDs. So far various mitochondria-targeting drugs have been developed and delightfully some of them demonstrate promising outcome, though there are still some obstacles such as targeting specificity, delivery capacity hindering the drugs development. In present review, we will elaborately address 1) the strategy to design mitochondria targeting drugs, 2) the rescue mechanism of respective mitochondria targeting drugs, 3) how to evaluate the therapeutic effect. Hopefully this review will provide comprehensive knowledge for understanding how to develop more effective drugs for the treatment of NDDs.

     

  • [1] Mukherjee A, Becerra Calixto AD, Chavez M, Delgado JP, Soto C. Mitochondrial transplant to replenish damaged mitochondria:a novel therapeutic strategy for neurodegenerative diseases?. Prog Mol Biol Transl Sci 2021;177:49-63
    [2] Roca-Portoles A, Tait SWG. Mitochondrial quality control:from molecule to organelle. Cell Mol Life Sci 2021;78:3853-3866
    [3] Liu PP, Xie Y, Meng XY, Kang JS. History and progress of hypotheses and clinical trials for Alzheimer's disease. Signal Transduct Target Ther 2019;4:29
    [4] Goyal S, Chaturvedi RK. Mitochondrial protein import dysfunction in pathogenesis of neurodegenerative diseases. Mol Neurobiol 2021;58:1418-1437
    [5] Wang XL, Feng ST, Wang ZZ, Chen NH, Zhang Y. Role of mitophagy in mitochondrial quality control:mechanisms and potential implications for neurodegenerative diseases. Pharmacol Res 2021;165:105433
    [6] Bock FJ, Tait SWG. Mitochondria as multifaceted regulators of cell death. Nat Rev Mol Cell Biol 2020;21:85-100
    [7] Murphy MP. Targeting lipophilic cations to mitochondria. Biochim Biophys Acta 2008;1777:1028-1031
    [8] Solesio ME, Prime TA, Logan A, Murphy MP, Del Mar Arroyo-Jimenez M, Jordan J, et al. The mitochondria-targeted anti-oxidant MitoQ reduces aspects of mitochondrial fission in the 6-OHDA cell model of Parkinson's disease. Biochim Biophys Acta 2013;1832:174-182
    [9] Mao G, Kraus GA, Kim I, Spurlock ME, Bailey TB, Zhang Q, et al. A mitochondria-targeted vitamin E derivative decreases hepatic oxidative stress and inhibits fat deposition in mice. J Nutr 2010;140:1425-1431
    [10] Jauslin ML, Meier T, Smith RAJ, Murphy PM. Mitochondria-targeted antioxidants protect friedreich ataxia fibroblasts from endogenous oxidative stress more effectively than untargeted antioxidants. FASEB J 2003;17:1972-1974
    [11] Zhelev Z, Bakalova R, Aoki I, Lazarova D, Saga T. Imaging of superoxide generation in the dopaminergic area of the brain in Parkinson's disease, using mito-TEMPO. ACS Chem Neurosci 2013;4:1439-1445
    [12] Paleos CM, Tsiourvas D, Sideratou Z. Triphenylphosphonium decorated liposomes and dendritic polymers:prospective second generation drug delivery systems for targeting mitochondria. Mol Pharm 2016;13:2233-2241
    [13] Rothbard JB, Jessop TC, Wender PA. Adaptive translocation:the role of hydrogen bonding and membrane potential in the uptake of guanidinium-rich transporters into cells. Adv Drug Deliv Rev 2005;57:495-504
    [14] Kwon HJ, Kim D, Seo K, Kim YG, Han SI, Kang T, et al. Ceria nanoparticle systems for selective scavenging of mitochondrial, intracellular, and extracellular reactive oxygen species in Parkinson's disease. Angew Chem Int Ed 2018;57:9408-9412
    [15] Yuan P, Mao X, Wu X, Liew SS, Li L, Yao SQ. Mitochondria-targeting, intracellular delivery of native proteins using biodegradable silica nanoparticles. Angew Chem Int Ed 2019;58:7657-7661
    [16] Qian K, Chen H, Qu C, Qi J, Du B, Ko T, et al. Mitochondria-targeted delocalized lipophilic cation complexed with human serum albumin for tumor cell imaging and treatment. Nanomedicine 2020;23:102087
    [17] Weissig V. From serendipity to mitochondria-targeted nanocarriers. Pharm Res 2011;28:2657-2668
    [18] D'Souza GG, Boddapati SV, Weissig V. Mitochondrial leader sequence-plasmid DNA conjugates delivered into mammalian cells by DQAsomes co-localize with mitochondria. Mitochondrion 2005;5:352-358
    [19] Ouyang C, Chen L, Rees TW, Chen Y, Liu J, Ji L, et al. A mitochondria-targeting hetero-binuclear Ir(III)-Pt(II) complex induces necrosis in cisplatin-resistant tumor cells. Chem Commun 2018;54:6268-6271
    [20] Zhang C, Guan R, Liao X, Ouyang C, Rees TW, Liu J, et al. A mitochondria-targeting dinuclear Ir-Ru complex as a synergistic photoactivated chemotherapy and photodynamic therapy agent against cisplatin-resistant tumour cells. Chem Commun 2019;55:12547-12550
    [21] Hoye AT, Davoren JE, Wipf AP. Targeting mitochondria. Acc Chem Res 2008;41:87-97
    [22] Horton KL, Stewart KM, Fonseca SB, Guo Q, Kelley SO. Mitochondria-penetrating peptides. Chem Biol 2008;15:375-382
    [23] Chuah JA, Yoshizumi T, Kodama Y, Numata K. Gene introduction into the mitochondria of Arabidopsis thaliana via peptide-based carriers. Sci Rep 2015;5:7751
    [24] Appiah Kubi G, Qian Z, Amiar S, Sahni A, Stahelin RV, Pei D. Non-peptidic cell-penetrating motifs for mitochondrion-specific cargo delivery. Angew Chem Int Ed 2018;57:17183-17188
    [25] Yamada Y, Akita H, Kamiya H, Kogure K, Yamamoto T, Shinohara Y, et al. MITO-Porter:a liposome-based carrier system for delivery of macromolecules into mitochondria via membrane fusion. Biochim Biophys Acta 2008;1778:423-432
    [26] Yamada Y, Harashima H. Delivery of bioactive molecules to the mitochondrial genome using a membrane-fusing, liposome-based carrier, DF-MITO-Porter. Biomaterials 2012;33:1589-1595
    [27] Kawamura E, Hibino M, Harashima H, Yamada Y. Targeted mitochondrial delivery of antisense RNA-containing nanoparticles by a MITO-Porter for safe and efficient mitochondrial gene silencing. Mitochondrion 2019;49:178-188
    [28] Yamada Y, Munechika R, Satrialdi, Kubota F, Sato Y, Sakurai Y, et al. Mitochondrial delivery of an anticancer drug via systemic administration using a mitochondrial delivery system that inhibits the growth of drug-resistant cancer engrafted on mice. J Pharm Sci 2020;109:2493-2500
    [29] Kawamura E, Maruyama M, Abe J, Sudo A, Takeda A, Takada S, et al. Validation of gene therapy for mutant mitochondria by delivering mitochondrial RNA using a MITO-Porter. Mol Ther Nucleic Acids 2020;20:687-698
    [30] Xun Z, Rivera-Sanchez S, Ayala-Pena S, Lim J, Budworth H, Skoda EM, et al. Targeting of XJB-5-131 to mitochondria suppresses oxidative DNA damage and motor decline in a mouse model of Huntington's disease. Cell Rep 2012;2:1137-1142
    [31] Gammage PA, Rorbach J, Vincent AI, Rebar EJ, Minczuk M. Mitochondrially targeted ZFNs for selective degradation of pathogenic mitochondrial genomes bearing large-scale deletions or point mutations. EMBO Mol Med 2014;6:458-466
    [32] Yang Y, Wu H, Kang X, Liang Y, Lan T, Li T, et al. Targeted elimination of mutant mitochondrial DNA in MELAS-iPSCs by mitoTALENs. Protein Cell 2018;9:283-297
    [33] Jo A, Ham S, Lee GH, Lee YI, Kim S, Lee YS, et al. Efficient mitochondrial genome editing by CRISPR/Cas9. Biomed Res Int 2015;215:305716
    [34] Bian WP, Chen YL, Luo JJ, Wang C, Xie SL, Pei DS. Knock-in strategy for editing human and zebrafish mitochondrial DNA using Mito-CRISPR/Cas9 system. ACS Synth Biol 2019;8:621-632
    [35] Mok BY, de Moraes MH, Zeng J, Bosch DE, Kotrys AV, Raguram A, et al. A bacterial cytidine deaminase toxin enables CRISPR-free mitochondrial base editing. Nature 2020;583:631-637
    [36] ISoldner F, Laganiere J, Cheng AW, Hockemeyer D, Gao Q, Alagappan R, et al. Generation of isogenic pluripotent stem cells differing exclusively at two early onset Parkinson point mutations. Cell 2011;146:318-331
    [37] An MC, Zhang N, Scott G, Montoro D, Wittkop T, Mooney S, et al. Genetic correction of Huntington's disease phenotypes in induced pluripotent stem cells. Cell Stem Cell 2012;11:253-263
    [38] Merienne N, Vachey G, Longprez L, Meunier C, Zimmer V, Perriard G, et al. The self-inactivating KamiCas9 system for the editing of CNS disease genes. Cell Rep 2017;20:2980-2991
    [39] Lopez J, Bessou M, Riley JS, Giampazolias E, Todt F, Rochegue T, et al. Mito-priming as a method to engineer Bcl-2 addiction. Nat Commun 2016;7:10538
    [40] Hellman M, Arumae U, Yu LY. Mesencephalic astrocyte-derived neurotrophic factor (MANF) has a unique mechanism to rescue apoptotic neurons. J Biol Chem 2011;286:2675-2680
    [41] Hu X, Song Q, Li X. Neuroprotective effects of kukoamine A on neurotoxin-induced Parkinson's model through apoptosis inhibition and autophagy enhancement. Neuropharmacology 2017;117:352-363
    [42] Garner TP, Amgalan D, Reyna DE, Li S, Kitsis RN, Gavathiotis E. Small-molecule allosteric inhibitors of BAX. Nat Chem Biol 2019;15:322-330
    [43] Shteinfer-Kuzmine A, Argueti S, Gupta R. A VDAC1-derived N-terminal peptide inhibits mutant SOD1-VDAC1 interactions and toxicity in the SOD1 model of ALS. Front Cell Neurosci 2019;13:346
    [44] Amarsanaa K, Kim HJ, Ko EA, Jo J, Jung SC. Nobiletin exhibits neuroprotective effects against mitochondrial complex I inhibition via regulating apoptotic signaling. Exp Neurobiol 2021;30:73-86
    [45] Kumar M, Sandhir R. Hydrogen sulfide attenuates hyperhomocysteinemia-induced mitochondrial dysfunctions in brain. Mitochondrion 2020;50:158-169
    [46] Jiang X, Li L, Ying Z, Pan C, Huang S, Li L, et al. A small molecule that protects the integrity of the electron transfer chain blocks the mitochondrial apoptotic pathway. Mol Cell 2016;63:229-239
    [47] Kam A, Loo S, Dutta B, Sze SK, Tam JP. Plant-derived mitochondria-targeting cysteine-rich peptide modulates cellular bioenergetics. J Biol Chem 2019;294:4000-4011
    [48] Yang B, Dan X, Hou Y, Lee JH, Wechter N, Krishnamurthy S, et al. NAD+ supplementation prevents STING-induced senescence in ataxia telangiectasia by improving mitophagy. Aging Cell 2021;20:e13329
    [49] Li Q, Gao S, Kang Z, Zhang M, Zhao X, Zhai Y, et al. Rapamycin enhances mitophagy and attenuates apoptosis after spinal ischemia-reperfusion injury. Front Neurosci 2018;12:865
    [50] Fang EF, Hou Y, Palikaras K, Adriaanse BA, Kerr JS, Yang B, et al. Mitophagy inhibits amyloid-β and tau pathology and reverses cognitive deficits in models of Alzheimer's disease. Nat Neurosci 2019;22:401-412
    [51] Perera ND, Sheean RK, Lau CL, Shin YS, Beart PM, Horne MK, et al. Rilmenidine promotes MTOR-independent autophagy in the mutant SOD1 mouse model of amyotrophic lateral sclerosis without slowing disease progression. Autophagy 2018;14:534-551
    [52] Genrikhs EE, Stelmashook EV, Popova OV, Kapay NA, Korshunova GA, Sumbatyan NV, et al. Mitochondria-targeted antioxidant SkQT1 decreases trauma-induced neurological deficit in rat and prevents amyloid-β-induced impairment of long-term potentiation in rat hippocampal slices. J Drug Target 2015;23:347-352
    [53] Kang YC, Son M, Kang S, Im S, Piao Y, Lim KS, et al. Cell-penetrating artificial mitochondria-targeting peptide-conjugated metallothionein 1A alleviates mitochondrial damage in Parkinson's disease models. Exp Mol Med 2018;50:1-13
    [54] Oliver DMA, Reddy PH. Small molecules as therapeutic drugs for Alzheimer's disease. Mol Cell Neurosci 2019;96:47-62
    [55] Wei Y, Lu M, Mei M, Wang H, Han Z, Chen M, et al. Pyridoxine induces glutathione synthesis via PKM2-mediated Nrf2 transactivation and confers neuroprotection. Nat Commun 2020;11:941
    [56] Anderson S, Bankier AT, Barrell BG, de Bruijn MH, Coulson AR, Drouin J, et al. Sequence and organization of the human mitochondrial genome. Nature 1981;290:457-465
    [57] Chakravorty A, Jetto CT, Manjithaya R. Dysfunctional mitochondria and mitophagy as drivers of Alzheimer's disease pathogenesis. Front Aging Neurosci 2019;11:311
    [58] Kim JY, Park S, Park SH, Lee D, Kim GH, Noh JE, et al. Overexpression of pigment epithelium-derived factor in placenta-derived mesenchymal stem cells promotes mitochondrial biogenesis in retinal cells. Lab Invest 2021; 101:51-69
    [59] Waragai M, Ho G, Takamatsu Y, Wada R, Sugama S, Takenouchi T, Masliah E, Hashimoto M. Adiponectin paradox in Alzheimer's disease; relevance to amyloidogenic evolvability?. Front Endocrinol (Lausanne) 2020;11:108
    [60] Angelova PR, Abramov AY. Functional role of mitochondrial reactive oxygen species in physiology. Free Radic Biol Med 2016;100:81-85
    [61] Young ML, Franklin JL. The mitochondria-targeted antioxidant MitoQ inhibits memory loss, neuropathology, and extends lifespan in aged 3xTg-AD mice. Mol Cell Neurosci 2019;101:103409
    [62] Hu H, Li M. Mitochondria-targeted antioxidant mitotempo protects mitochondrial function against amyloid beta toxicity in primary cultured mouse neurons. Biochem Biophys Res Commun 2016;478:174-180
    [63] Geng, J. Andrographolide alleviates parkinsonism in MPTP-PD mice via targeting mitochondrial fission mediated by dynamin-related protein 1. Br J Pharmacol 2019;176:4574-4591
    [64] Imamura H, Nhat KP, Togawa H, Saito K, Iino R, Kato-Yamada Y, et al. Visualization of ATP levels inside single living cells with fluorescence resonance energy transfer-based genetically encoded indicators. Proc Natl Acad Sci U S A 2009;106:15651-15656
    [65] Lobas MA, Tao R, Nagai J, Kronschlager MT, Borden PM, Marvin JS, et al. A genetically encoded single-wavelength sensor for imaging cytosolic and cell surface ATP. Nat Commun 2019;10:711
    [66] Wu Z, He K, Chen Y, Li H, Pan S, Li B, et al. A sensitive GRAB sensor for detecting extracellular ATP in vitro and in vivo. Neuron 2021; S0896:6273
    [67] Liu W, Zhu X, Mozneb M, Nagahara L, Hu TY, Li CZ. Lighting up ATP in cells and tissues using a simple aptamer-based fluorescent probe. Mikrochim Acta 2021;188:352
    [68] Zhang X, Liu J, Wang J, Han L, Ma S, Zhao M, Xi G. Adenosine triphosphate and zinc(II) ions responsive pyrene based turn-on fluorescent probe and its application in live cell imaging. J Photochem Photobiol B 2021;223:112279
    [69] Kim JD, Yoon NA, Jin S, Diano S. Microglial UCP2 mediates inflammation and obesity induced by high-fat feeding. Cell Metab 2019;30:952-962
    [70] Marano S, Minnelli C, Ripani L, Marcaccio M, Laudadio E, Mobbili G, et al. Insights into the antioxidant mechanism of newly synthesized benzoxazinic nitrones:in vitro and in silico studies with DPPH model radical. Antioxidants (Basel) 2021;10:1224
    [71] Lohan SB, Ivanov D, Schuler N, Berger B, Zastrow L, Lademann J, et al. Switching from healthy to unhealthy oxidative stress-does the radical type can be used as an indicator?. Free Radic Biol Med 2021;162:401-411
    [72] Uppakara K, Jamornwan S, Duan LX, Yue KR, Sunrat C, Dent EW, et al. Novel α-lipoic acid/3-n-butylphthalide conjugate enhances protective effects against oxidative stress and 6-OHDA induced neuronal damage. ACS Chem Neurosci 2020;11:1634-1642
    [73] Kang S, Piao Y, Kang YC, Lim S, Pak YK. Qi-activating quercetin alleviates mitochondrial dysfunction and neuroinflammation in vivo and in vitro. Arch Pharm Res 2020;43:553-566
    [74] Zakaria A, Hamdi N, Abdel-Kader RM. Methylene blue improves brain mitochondrial ABAD functions and decreases Aβ in a neuroinflammatory Alzheimer's disease mouse model. Mol Neurobiol 2016;53:1220-1228
    [75] Dragicevic N, Copes N, O'Neal-Moffitt G, Jin J, Buzzeo R, Mamcarz M, et al. Melatonin treatment restores mitochondrial function in Alzheimer's mice:a mitochondrial protective role of melatonin membrane receptor signaling. J Pineal Res 2011;51:75-86
    [76] Watts LT. Stimulating mitochondria to protect the brain following traumatic brain injury. Neural Regen Res 2016;11:1403-1404
    [77] Liu ZD, Zhang S, Hao JJ, Xie TR, Kang JS. Cellular model of neuronal atrophy induced by DYNC1I1 deficiency reveals protective roles of RAS-RAF-MEK signaling. Protein Cell 2016;7:638-650
    [78] Maliyakkal N, Appadath Beeran A, Udupa N. Nanoparticles of cisplatin augment drug accumulations and inhibit multidrug resistance transporters in human glioblastoma cells. Saudi Pharm J 2021;29:857-873
    [79] Xie TR, Liu CF, Kang JS. Dye-based mito-thermometry and its application in thermogenesis of brown adipocytes. Biophys Rep 2017;3:85-91
    [80] Hoes MF, Grote BN, Kijlstra JD, Kuipers J, Swinkels DW, Giepmans BNG, et al. Iron deficiency impairs contractility of human cardiomyocytes through decreased mitochondrial function. Eur J Heart Fail 2018;20:910-919
    [81] Zerbetto E, Vergani L, Dabbeni-Sala F. Quantification of muscle mitochondrial oxidative phosphorylation enzymes via histochemical staining of blue native polyacrylamide gels. Electrophoresis 1997;18:2059-2064
    [82] Han Y, Chu X, Cui L, Fu S, Gao C, Li Y, Sun B. Neuronal mitochondria-targeted therapy for Alzheimer's disease by systemic delivery of resveratrol using dual-modified novel biomimetic nanosystems. Drug Deliv 2020;27:502-518
    [83] Li H, Wang C, He T, Zhao T, Chen YY, Shen YL, et al. Mitochondrial transfer from bone marrow mesenchymal stem cells to motor neurons in spinal cord injury rats via gap junction. Theranostics 2019 17;9:2017-2035
    [84] Volker J, Engert J, Volker C, Bieniussa L, Schendzielorz P, Hagen R, et al. Isolation and characterization of neural stem cells from the rat inferior colliculus. Stem Cells Int 2019;2019:5831240
    [85] Xiang Y, Niu Y, Xie Y, Chen S, Zhu F, Shen W, Zeng LH. Inhibition of RhoA/Rho kinase signaling pathway by fasudil protects against kainic acid-induced neurite injury. Brain Behav 2021;11:e2266
    [86] Pedrazzoli M, Medelin M, Marchiotto F, Cisterna B, Malatesta M, Buffelli M. An improved and simplified protocol to combine Golgi-Cox staining with immunofluorescence and transmission electron microscopy techniques. Neurochem Int 2021;142:104922
    [87] Lavenir I, Passarella D, Masuda M, Curry A, Holton JL, Ghetti B, et al. Silver staining (Campbell-Switzer) of neuronal α-synuclein assemblies induced by multiple system atrophy and Parkinson's disease brain extracts in transgenic mice. Acta Neuropathol Commun 2019;7:148
    [88] Magnain C, Augustinack JC, Tirrell L, Fogarty M, Frosch MP, Boas D, et al. Colocalization of neurons in optical coherence microscopy and Nissl-stained histology in Brodmann's area 32 and area 21. Brain Struct Funct 2019;224:351-362
    [89] Chen YC, Ma NX, Pei ZF, Wu Z, Do-Monte FH, Keefe S, et al. A neuroD1 AAV-Based gene therapy for functional brain repair after ischemic injury through in vivo astrocyte-to-neuron conversion. Mol Ther 2020;28:217-234
    [90] Ng CH, Guan MS, Koh C, Ouyang X, Yu F, Tan EK, et al. AMP kinase activation mitigates dopaminergic dysfunction and mitochondrial abnormalities in drosophila models of Parkinson's disease. J Neurosci 2012;32:14311-14317
    [91] Mor DE, Sohrabi S, Kaletsky R, Keyes W, Tartici A, Kalia V, et al. Metformin rescues Parkinson's disease phenotypes caused by hyperactive mitochondria. Proc Natl Acad Sci U S A 2020;117:26438-26447
    [92] Cadwell CR, Palasantza A, Jiang X, Berens P, Deng Q, Yilmaz M, et al. Electrophysiological, transcriptomic and morphologic profiling of single neurons using Patch-seq. Nat Biotechnol 2016;34:199-203
    [93] Pasquereau B, Tremblay L, Turner RS. Local field potentials reflect dopaminergic and non-dopaminergic activities within the primate midbrain. Neuroscience 2019;399:167-183
    [94] Hang L, Thundyil J, Goh GWY, Lim KL. AMP kinase activation is selectively disrupted in the ventral midbrain of mice deficient in Parkin or PINK1 expression. Neuromolecular Med 2019;21:25-32
    [95] Hautbergue GM, Castelli LM, Ferraiuolo L, Sanchez A, Cooper J, Higginbottom A, et al. SRSF1-dependent nuclear export inhibition of C9ORF72 repeat transcripts prevents neurodegeneration and associated motor deficits. Nat Commun 2017;8:16063
    [96] Gao F, Xiong Z. Reactive oxygen species responsive polymers for drug delivery systems. Front Chem 2021;9:649048
    [97] Norat P, Soldozy S, Sokolowski JD, Gorick CM, Kumar JS, Chae Y, et al. Mitochondrial dysfunction in neurological disorders:exploring mitochondrial transplantation. NPJ Regen Med 2020;5:22
    [98] Lu B, Ye JP. Commentary:PROTACs make undruggable targets druggable:challenge and opportunity. Acta Pharm Sin B 2021;11:3335-3336
  • 加载中
计量
  • 文章访问数:  44
  • HTML全文浏览量:  35
  • PDF下载量:  0
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-12-05
  • 修回日期:  2022-01-15
  • 录用日期:  2022-01-28
  • 网络出版日期:  2023-03-17

目录

    /

    返回文章
    返回