留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Tailoring combinatorial lipid nanoparticles for intracellular delivery of nucleic acids, proteins, and drugs

Yamin Li Zhongfeng Ye Hanyi Yang Qiaobing Xu

Yamin Li, Zhongfeng Ye, Hanyi Yang, Qiaobing Xu. Tailoring combinatorial lipid nanoparticles for intracellular delivery of nucleic acids, proteins, and drugs[J]. 机械工程学报. doi: 10.1016/j.apsb.2022.04.013
引用本文: Yamin Li, Zhongfeng Ye, Hanyi Yang, Qiaobing Xu. Tailoring combinatorial lipid nanoparticles for intracellular delivery of nucleic acids, proteins, and drugs[J]. 机械工程学报. doi: 10.1016/j.apsb.2022.04.013
Yamin Li, Zhongfeng Ye, Hanyi Yang, Qiaobing Xu. Tailoring combinatorial lipid nanoparticles for intracellular delivery of nucleic acids, proteins, and drugs[J]. JOURNAL OF MECHANICAL ENGINEERING. doi: 10.1016/j.apsb.2022.04.013
Citation: Yamin Li, Zhongfeng Ye, Hanyi Yang, Qiaobing Xu. Tailoring combinatorial lipid nanoparticles for intracellular delivery of nucleic acids, proteins, and drugs[J]. JOURNAL OF MECHANICAL ENGINEERING. doi: 10.1016/j.apsb.2022.04.013

Tailoring combinatorial lipid nanoparticles for intracellular delivery of nucleic acids, proteins, and drugs

doi: 10.1016/j.apsb.2022.04.013
基金项目: 

This study was supported by the National Institutes of Health (NIH) Grants R01 EB027170-04 and UG3 TR002636-01, USA.

详细信息
    通讯作者:

    Qiaobing Xu,E-mail:Qiaobing.Xu@tufts.edu

  • 中图分类号: https://www.sciencedirect.com/science/article/pii/S2211383522001861/pdf?md5=5026d16e90253f37cb7b819ebcac905d&pid=1-s2.0-S2211383522001861-main.pdf

Tailoring combinatorial lipid nanoparticles for intracellular delivery of nucleic acids, proteins, and drugs

Funds: 

This study was supported by the National Institutes of Health (NIH) Grants R01 EB027170-04 and UG3 TR002636-01, USA.

  • 摘要: Lipid nanoparticle (LNP)-based drug delivery systems have become the most clinically advanced non-viral delivery technology. LNPs can encapsulate and deliver a wide variety of bioactive agents, including the small molecule drugs, proteins and peptides, and nucleic acids. However, as the physicochemical properties of small- and macromolecular cargos can vary drastically, every LNP carrier system needs to be carefully tailored in order to deliver the cargo molecules in a safe and efficient manner. Our group applied the combinatorial library synthesis approach and in vitro and in vivo screening strategy for the development of LNP delivery systems for drug delivery. In this Review, we highlight our recent progress in the design, synthesis, characterization, evaluation, and optimization of combinatorial LNPs with novel structures and properties for the delivery of small- and macromolecular therapeutics both in vitro and in vivo. These delivery systems have enormous potentials for cancer therapy, antimicrobial applications, gene silencing, genome editing, and more. We also discuss the key challenges to the mechanistic study and clinical translation of new LNP-enabled therapeutics.

     

  • [1] van der Meel R, Chen S, Zaifman J, Kulkarni JA, Zhang XRS, Tam YK, et al. Modular lipid nanoparticle platform technology for siRNA and lipophilic prodrug delivery. Small 2021;17:e2103025
    [2] Swingle KL, Hamilton AG, Mitchell MJ. Lipid nanoparticle-mediated delivery of mRNA therapeutics and vaccines. Trends Mol Med 2021;27:616-617
    [3] Battaglia L, Gallarate M. Lipid nanoparticles:state of the art, new preparation methods and challenges in drug delivery. Expert Opin Drug Deliv 2012;9:497-508
    [4] Zhang Y, Sun C, Wang C, Jankovic KE, Dong Y. Lipids and lipid derivatives for RNA delivery. Chem Rev 2021;121:12181-12277
    [5] Schoenmaker L, Witzigmann D, Kulkarni JA, Verbeke R, Kersten G, Jiskoot W, et al. mRNA-lipid nanoparticle COVID-19 vaccines:structure and stability. Int J Pharm 2021;601:120586
    [6] Shen W, Wang R, Fan Q, Gao X, Wang H, Shen Y, et al. Natural polyphenol inspired polycatechols for efficient siRNA delivery. CCS Chemistry 2020;2:146-157
    [7] Xu W, Luo FQ, Tong QS, Li JX, Miao WM, Zhang Y, et al. An intracellular pH-actuated polymer for robust cytosolic protein delivery. CCS Chemistry 2021;3:431-442
    [8] Xu Y, Mo J, Wei W, Zhao J. Oxidized black phosphorus nanosheets as an inorganic antiresorptive agent. CCS Chemistry 2021;3:1105-1115
    [9] Fattal E, Fay F. Nanomedicine-based delivery strategies for nucleic acid gene inhibitors in inflammatory diseases. Adv Drug Deliv Rev 2021;175:113809
    [10] Luo L, Qi Y, Zhong H, Jiang S, Zhang H, Cai H, et al. GSH-sensitive polymeric prodrug:synthesis and loading with photosensitizers as nanoscale chemo-photodynamic anti-cancer nanomedicine. Acta Pharm Sin B 2022;12:424-436
    [11] Luo XM, Yan C, Feng YM. Nanomedicine for the treatment of diabetes-associated cardiovascular diseases and fibrosis. Adv Drug Deliv Rev 2021;172:234-248
    [12] Ding F, Zhang H, Cui J, Li Q, Yang C. Boosting ionizable lipid nanoparticle-mediated in vivo mRNA delivery through optimization of lipid amine-head groups. Biomater Sci 2021;9:7534-7546
    [13] Guo S, Li K, Hu B, Li C, Zhang M, Hussain A, et al. Membrane-destabilizing ionizable lipid empowered imaging-guided siRNA delivery and cancer treatment. Exploration 2021;1:35-49
    [14] Liu S, Cheng Q, Wei T, Yu X, Johnson LT, Farbiak L, et al. Membrane-destabilizing ionizable phospholipids for organ-selective mRNA delivery and CRISPR-Cas gene editing. Nat Mater 2021;20:701-710
    [15] Patel P, Ibrahim NM, Cheng K. The importance of apparent pKa in the development of nanoparticles encapsulating siRNA and mRNA. Trends Pharmacol Sci 2021;42:448-460
    [16] Pattipeiluhu R, Arias-Alpizar G, Basha G, Chan KYT, Bussmann J, Sharp TH, et al. Anionic lipid nanoparticles preferentially deliver mRNA to the hepatic reticuloendothelial system. Adv Mater 2022:e2201095
    [17] Basso J, Mendes M, Cova T, Sousa J, Pais A, Fortuna A, et al. A stepwise framework for the systematic development of lipid nanoparticles. Biomolecules 2022;12:223
    [18] Zhou JE, Sun L, Liu L, Jia Y, Han Y, Shao J, et al. Hepatic macrophage targeted siRNA lipid nanoparticles treat non-alcoholic steatohepatitis. J Control Release 2022;343:175-186
    [19] Han JP, Kim M, Choi BS, Lee JH, Lee GS, Jeong M, et al. In vivo delivery of CRISPR-Cas9 using lipid nanoparticles enables antithrombin gene editing for sustainable hemophilia A and B therapy. Sci Adv 2022;8:eabj6901
    [20] Guimaraes PPG, Zhang R, Spektor R, Tan M, Chung A, Billingsley MM, et al. Ionizable lipid nanoparticles encapsulating barcoded mRNA for accelerated in vivo delivery screening. J Control Release 2019;316:404-417
    [21] Ramishetti S, Hazan-Halevy I, Palakuri R, Chatterjee S, Naidu Gonna S, Dammes N, et al. A combinatorial library of lipid nanoparticles for RNA delivery to leukocytes. Adv Mater 2020;32:e1906128
    [22] Lenssen K, Jantscheff P, von Kiedrowski G, Massing U. Combinatorial synthesis of new cationic lipids and high-throughput screening of their transfection properties. ChemBioChem 2002;3:852-858
    [23] Altinoglu S, Wang M, Xu QB. Combinatorial library strategies for synthesis of cationic lipid-like nanoparticles and their potential medical applications. Nanomedicine 2015;10:643-657
    [24] Farokhzad OC, Langer R. Nanomedicine:developing smarter therapeutic and diagnostic modalities. Adv Drug Deliv Rev 2006;58:1456-1459
    [25] Yu HJ, De Geest BG. Nanomedicine and cancer immunotherapy. Acta Pharmacol Sin 2020;41:879-880
    [26] Yaghmur A, Mu H. Recent advances in drug delivery applications of cubosomes, hexosomes, and solid lipid nanoparticles. Acta Pharm Sin B 2021;11:871-885
    [27] Buck J, Grossen P, Cullis PR, Huwyler J, Witzigmann D. Lipid-based DNA therapeutics:hallmarks of non-viral gene delivery. ACS nano 2019;13:3754-3782
    [28] Kaczmarek JC, Kowalski PS, Anderson DG. Advances in the delivery of RNA therapeutics:from concept to clinical reality. Genome Med 2017;9:60
    [29] Akinc A, Maier MA, Manoharan M, Fitzgerald K, Jayaraman M, Barros S, et al. The Onpattro story and the clinical translation of nanomedicines containing nucleic acid-based drugs. Nat Biotechnol 2019;14:1084-1087
    [30] Wang ZJ, Schmidt F, Weisblum Y, Muecksch F, Barnes CO, Finkin S, et al. mRNA vaccine-elicited antibodies to SARS-CoV-2 and circulating variants. Nature 2021;592:616-622
    [31] Wang M, Alberti K, Varone A, Pouli D, Georgakoudi I, Xu QB. Enhanced intracellular siRNA delivery using bioreducible lipid-like nanoparticles. Adv Healthc Mater 2014;3:1398-1403
    [32] Ma X, Zhou P, Kugelmass A, Toskic D, Warner M, Lee LX, et al. Effective lipidoid nanoparticle delivery in vivo of siRNA targeting kappa light chain production in a murine xenograft model. Blood 2018;132:3208
    [33] Ma X, Zhou P, Kugelmass A, Toskic D, Warner M, Lee L, et al. A novel xenograft mouse model for testing approaches targeting human kappa light-chain diseases. Gene Ther 2019;26:187-197
    [34] Chalbatani GM, Dana H, Gharagouzloo E, Grijalvo S, Eritja R, Logsdon CD, et al. Small interfering RNAs (siRNAs) in cancer therapy:a nano-based approach. Int J Nanomed 2019;14:3111-3128
    [35] Hu B, Zhong LP, Weng YH, Peng L, Huang YY, Zhao YX, et al. Therapeutic siRNA:state of the art. Signal Transduct Tar 2020;5:101
    [36] Qiu M, Glass Z, Chen JJ, Haas M, Jin X, Zhao XW, et al. Lipid nanoparticle-mediated codelivery of Cas9 mRNA and single-guide RNA achieves liver-specific in vivo genome editing of Angptl3. Proc Natl Acad Sci USA 2021;118:e2020401118
    [37] Liu J, Chang J, Jiang Y, Meng XD, Sun TM, Mao LQ, et al. Fast and efficient CRISPR/Cas9 genome editing in vivo enabled by bioreducible lipid and messenger RNA nanoparticles. Adv Mater 2019;31:1902575
    [38] Qiu M, Li YM, Bloomer H, Xu QB. Developing biodegradable lipid nanoparticles for intracellular mRNA delivery and genome editing. Accounts Chem Res 2021;54:4001-4011
    [39] Doudna JA. The promise and challenge of therapeutic genome editing. Nature 2020;578:229-236
    [40] Zhao XW, Glass Z, Chen JJ, Yang L, Kaplan DL, Xu QB. mRNA delivery using bioreducible lipidoid nanoparticles facilitates neural differentiation of human mesenchymal stem cells. Adv Healthc Mater 2021;10:2000938
    [41] Zhao XW, Chen JJ, Qiu M, Li YM, Glass Z, Xu QB. Imidazole-based synthetic lipidoids for in vivo mRNA delivery into primary T lymphocytes. Angew Chem Int Edit 2020;59:20083-20089
    [42] Li YM, Jarvis R, Zhu KX, Glass Z, Ogurlu R, Gao PY, et al. Protein and mRNA delivery enabled by cholesteryl-based biodegradable lipidoid nanoparticles. Angew Chem Int Edit 2020;59:14957-14964
    [43] Li YM, Li R, Chakraborty A, Ogurlu R, Zhao XW, Chen JJ, et al. Combinatorial library of cyclic benzylidene acetal-containing pH-responsive lipidoid nanoparticles for intracellular mRNA delivery. Bioconjugate Chem 2020;31:1835-1843
    [44] Gagliardi M, Ashizawa AT. The challenges and strategies of antisense oligonucleotide drug delivery. Biomedicines 2021;9:433
    [45] Yang L, Ma FH, Liu F, Chen JJ, Zhao XW, Xu QB. Efficient delivery of antisense oligonucleotides using bioreducible lipid nanoparticles in vitro and in vivo. Mol Ther-Nucl Acids 2020;19:1357-1367
    [46] Ma FH, Yang L, Sun ZR, Chen JJ, Rui XH, Glass Z, et al. Neurotransmitter-derived lipidoids (NT-lipidoids) for enhanced brain delivery through intravenous injection. Sci Adv 2020;6:eabb4429
    [47] Devos SL, Goncharoff DK, Chen G, Kebodeaux CS, Yamada K, Stewart FR, et al. Antisense reduction of tau in adult mice protects against seizures. J Neurosci 2013;33:12887-12897
    [48] DeVos SL, Miller RL, Schoch KM, Holmes BB, Kebodeaux CS, Wegener AJ, et al. Tau reduction prevents neuronal loss and reverses pathological tau deposition and seeding in mice with tauopathy. Sci Transl Med 2017;9:eaag0481
    [49] Feng J, Lepetre-Mouelhi S, Gautier A, Mura S, Cailleau C, Coudore F, et al. A new painkiller nanomedicine to bypass the blood-brain barrier and the use of morphine. Sci Adv 2019;5:eaau5148
    [50] Zhou Y, Zhu F, Liu Y, Zheng M, Wang Y, Zhang D, et al. Blood-brain barrier-penetrating siRNA nanomedicine for Alzheimer's disease therapy. Sci Adv 2020;6
    [51] Santos T, Boto C, Saraiva CM, Bernardino L, Ferreira L. Nanomedicine approaches to modulate neural stem cells in brain repair. Trends Biotechnol 2016;34:437-439
    [52] Takeda YS, Wang M, Deng P, Xu QB. Synthetic bioreducible lipid-based nanoparticles for miRNA delivery to mesenchymal stem cells to induce neuronal differentiation. Bioeng Transl Med 2016;1:160-167
    [53] Sui L, Wang M, Han QQ, Yu LM, Zhang L, Zheng LL, et al. A novel lipidoid-microRNA formulation promotes calvarial bone regeneration. Biomaterials 2018;177:88-97
    [54] Wang Q, Wang XY, Valverde P, Murray D, Dard MM, Van Dyke T, et al. Osteogenic effects of microRNA-335-5p/lipidoid nanoparticles coated on titanium surface. Arch Oral Biol 2021;129:105207
    [55] Zhang J, Tu QS, Bonewald LF, He X, Stein G, Lian J, et al. Effects of miR-335-5p in modulating osteogenic differentiation by specifically downregulating Wnt antagonist DKK1. J Bone Miner Res 2011;26:1953-1963
    [56] Leng QP, Chen LN, Lv YG. RNA-based scaffolds for bone regeneration:application and mechanisms of mRNA, miRNA and siRNA. Theranostics 2020;10:3190-3205
    [57] Wang M, Sun S, Alberti KA, Xu QB. A combinatorial library of unsaturated lipidoids for efficient intracellular gene delivery. ACS Synthetic Biology 2012;1:403-407
    [58] Zhi DF, Zhang SB, Wang B, Zhao YN, Yang BL, Yu SJ. Transfection efficiency of cationic lipids with different hydrophobic domains in gene delivery. Bioconjugate Chem 2010;21:563-577
    [59] Sun S, Wang M, Knupp SA, Soto-Feliciano Y, Hu X, Kaplan DL, et al. Combinatorial library of lipidoids for in vitro DNA delivery. Bioconjugate Chem 2012;23:135-140
    [60] Sun S, Wang M, Alberti KA, Choy A, Xu QB. DOPE facilitates quaternized lipidoids (QLDs) for in vitro DNA delivery. Nanomedicine 2013;9:849-854
    [61] Torchilin VP. Recent advances with liposomes as pharmaceutical carriers. Nat Rev Drug Discov 2005;4:145-160
    [62] Patil SD, Rhodes DG, Burgess DJ. DNA-based therapeutics and DNA delivery systems:a comprehensive review. Aaps J 2005;7:E61-E77
    [63] Buschmann MD, Carrasco MJ, Alishetty S, Paige M, Alameh MG, Weissman D. Nanomaterial delivery systems for mRNA vaccines. Vaccines 2021;9:65
    [64] Jayaraman M, Ansell SM, Mui BL, Tam YK, Chen J, Du X, et al. Maximizing the potency of siRNA lipid nanoparticles for hepatic gene silencing in vivo. Angew Chem Int Edit 2012;51:8529-8533
    [65] Pilkington EH, Suys EJA, Trevaskis NL, Wheatley AK, Zukancic D, Algarni A, et al. From influenza to COVID-19:lipid nanoparticle mRNA vaccines at the frontiers of infectious diseases. Acta biomaterialia 2021;131:16-40
    [66] Semple SC, Akinc A, Chen J, Sandhu AP, Mui BL, Cho CK, et al. Rational design of cationic lipids for siRNA delivery. Nat Biotechnol 2010;28:172-176
    [67] Evers MJW, Du W, Yang Q, Kooijmans SAA, Vink A, van Steenbergen M, et al. Delivery of modified mRNA to damaged myocardium by systemic administration of lipid nanoparticles. J Control Release 2022;343:207-216
    [68] Hagino Y, Khalil IA, Kimura S, Kusumoto K, Harashima H. GALA-modified lipid nanoparticles for the targeted delivery of plasmid DNA to the lungs. Molecular pharmaceutics 2021;18:878-888
    [69] Shankar R, Joshi M, Pathak K. Lipid nanoparticles:a novel approach for brain targeting. Pharm Nanotechnol 2018;6:81-93
    [70] Zhang R, El-Mayta R, Murdoch TJ, Warzecha CC, Billingsley MM, Shepherd SJ, et al. Helper lipid structure influences protein adsorption and delivery of lipid nanoparticles to spleen and liver. Biomater Sci 2021;9:1449-1463
    [71] Cheng Q, Wei T, Farbiak L, Johnson LT, Dilliard SA, Siegwart DJ. Selective organ targeting (SORT) nanoparticles for tissue-specific mRNA delivery and CRISPR-Cas gene editing. Nat Nanotechnol 2020;15:313-320
    [72] Wei T, Cheng Q, Min YL, Olson EN, Siegwart DJ. Systemic nanoparticle delivery of CRISPR-Cas9 ribonucleoproteins for effective tissue specific genome editing. Nat Commun 2020;11:3232
    [73] Bahl K, Senn JJ, Yuzhakov O, Bulychev A, Brito LA, Hassett KJ, et al. Preclinical and clinical demonstration of immunogenicity by mRNA vaccines against H10N8 and H7N9 influenza viruses. Mol Ther 2017;25:1316-1327
    [74] Aptamer-Anchored Rubrene-Loaded Organic Nanoprobes for Cancer Cell Targeting and Imaging. CCS Chemistry 2019
    [75] Yang X, Chang J, Jiang Y, Xu Q, Wang M, Mao L. In vivo activation of pro-protein therapeutics via chemically engineered enzyme cascade reaction. CCS Chemistry 2021;3:780-790
    [76] Zhao Z, Wang Y, Qiu L, Fu T, Yang Y, Peng R, et al. New insights from chemical biology:molecular basis of transmission, diagnosis, and therapy of SARS-CoV-2. CCS Chemistry 2021;3:1501-1528
    [77] Akbaba H, Erel-Akbaba G, Senturk S. Recruitment of solid lipid nanoparticles for the delivery of CRISPR/Cas9:primary evaluation of anticancer gene editing. Nanomedicine 2021;16:963-978
    [78] Usmani SS, Bedi G, Samuel JS, Singh S, Kalra S, Kumar P, et al. THPdb:Database of FDA-approved peptide and protein therapeutics. PLoS One 2017;12:e0181748
    [79] Li YM, Li PX, Li R, Xu QB. Intracellular antibody delivery mediated by lipids, polymers, and inorganic nanomaterials for therapeutic applications. Adv Ther 2020;3:2000178
    [80] Anzalone AV, Koblan LW, Liu DR. Genome editing with CRISPR-Cas nucleases, base editors, transposases and prime editors. Nat Biotechnol 2020;38:824-844
    [81] Glass Z, Li YM, Xu QB. Nanoparticles for CRISPR-Cas9 delivery. Nat Biomed Eng 2017;1:854-855
    [82] Wang M, Glass ZA, Xu Q. Non-viral delivery of genome-editing nucleases for gene therapy. Gene Ther 2017;24:144-150
    [83] Glass Z, Lee M, Li YM, Xu QB. Engineering the delivery system for CRISPR-based genome editing. Trends Biotechnol 2018;36:173-185
    [84] Li YM, Glass Z, Xu QB. Rescued from the fate of neurological disorder. Nat Biomed Eng 2018;2:469-470
    [85] Chang J, Chen XH, Glass Z, Gao F, Mao LQ, Wang M, et al. Integrating combinatorial lipid nanoparticle and chemically modified protein for intracellular delivery and genome editing. Accounts Chem Res 2019;52:665-675
    [86] Li YM, Glass Z, Huang MQ, Chen ZY, Xu QB. Ex vivo cell-based CRISPR/Cas9 genome editing for therapeutic applications. Biomaterials 2020;234:119711
    [87] Wang M, Zuris JA, Meng FT, Rees H, Sun S, Deng P, et al. Efficient delivery of genome-editing proteins using bioreducible lipid nanoparticles. P Natl Acad Sci USA 2016;113:2868-2873
    [88] Li YM, Yang T, Yu YJ, Shi N, Yang L, Glass Z, et al. Combinatorial library of chalcogen-containing lipidoids for intracellular delivery of genome-editing proteins. Biomaterials 2018;178:652-662
    [89] Li YM, Bolinger J, Yu YJ, Glass Z, Shi N, Yang L, et al. Intracellular delivery and biodistribution study of CRISPR/Cas9 ribonucleoprotein loaded bioreducible lipidoid nanoparticles. Biomater Sci 2019;7:596-606
    [90] Cox DBT, Platt RJ, Zhang F. Therapeutic genome editing:prospects and challenges. Nat Med 2015;21:121-131
    [91] Gao X, Tao Y, Lamas V, Huang MQ, Yeh WH, Pan BF, et al. Treatment of autosomal dominant hearing loss by in vivo delivery of genome editing agents. Nature 2018;553:217-221
    [92] Ho TC, Kim HS, Chen YM, Li YM, LaMere MW, Chen C, et al. Scaffold-mediated CRISPR-Cas9 delivery system for acute myeloid leukemia therapy. Sci Adv 2021;7:eabg3217
    [93] Yang T, Han HB, Chen Y, Yang L, Parker R, Li YM, et al. Study the lipidoid nanoparticle mediated genome editing protein delivery using 3D intestinal tissue model. Bioact Mater 2021;6:3671-3677
    [94] Wang M, Alberti K, Sun S, Arellano CL, Xu QB. Combinatorially designed lipid-like nanoparticles for intracellular delivery of cytotoxic protein for cancer therapy. Angew Chem Int Edit 2014;53:2893-2898
    [95] Wang M, Sun S, Neufeld CI, Perez-Ramirez B, Xu QB. Reactive oxygen species-responsive protein modification and its intracellular delivery for targeted cancer therapy. Angew Chem Int Edit 2014;53:13444-13448
    [96] Altinoglu SA, Wang M, Li KQ, Li YY, Xu QB. Intracellular delivery of the PTEN protein using cationic lipidoids for cancer therapy. Biomater Sci 2016;4:1773-1780
    [97] Zhang GN, Gupta P, Wang M, Barbuti AM, Ashby CR, Zhang YK, et al. Lipid-saporin nanoparticles for the intracellular delivery of cytotoxic protein to overcome ABC transporter-mediated multidrug resistance in vitro and in vivo. Cancers 2020;12:498
    [98] Wang XY, Li YM, Li QS, Neufeld CI, Pouli D, Sun S, et al. Hyaluronic acid modification of RNase A and its intracellular delivery using lipid-like nanoparticles. J Control Release 2017;263:39-45
    [99] Meadows KL, Li Y, Xu Q, Ayres S. A novel non-surgical method to reduce fertility using the rat as a model. Clinical Theriogenology 2019;11:31-41
    [100] Chen JJ, Qiu M, Ma FH, Yang L, Glass Z, Xu QB. Enhanced protein degradation by intracellular delivery of pre-fused PROTACs using lipid-like nanoparticles. J Control Release 2021;330:1244-1249
    [101] Chen JJ, Qiu M, Ye ZF, Nyalile T, Li YM, Glass Z, et al. In situ cancer vaccination using lipidoid nanoparticles. Sci Adv 2021;7:eabf1244
    [102] Bamrungsap S, Zhao ZL, Chen T, Wang L, Li CM, Fu T, et al. Nanotechnology in therapeutics:a focus on nanoparticles as a drug delivery system. Nanomedicine 2012;7:1253-1271
    [103] Couvreur P. Nanoparticles in drug delivery:past, present and future. Adv Drug Deliv Rev 2013;65:21-23
    [104] Paranjpe M, Muller-Goymann CC. Nanoparticle-mediated pulmonary drug delivery:a review. Int J Mol Sci 2014;15:5852-5873
    [105] Matoba T, Egashira K. Nanoparticle-mediated drug delivery system for cardiovascular disease. Int Heart J 2014;55:281-286
    [106] Riehemann K, Schneider SW, Luger TA, Godin B, Ferrari M, Fuchs H. Nanomedicine-challenge and perspectives. Angew Chem Int Edit 2009;48:872-897
    [107] Amiri M, Jafari S, Kurd M, Mohamadpour H, Khayati M, Ghobadinezhad F, et al. Engineered solid lipid nanoparticles and nanostructured lipid carriers as new generations of blood-brain barrier transmitters. ACS Chem Neurosci 2021;12:4475-4490
    [108] Okur NU, Siafaka PI, Gokce EH. Challenges in oral drug delivery and applications of lipid nanoparticles as potent oral drug carriers for managing cardiovascular risk factors. Curr Pharm Biotechnol 2021;22:892-905
    [109] Qin X, He L, Fan D, Liang W, Wang Q, Fang J. Targeting the resolution pathway of inflammation using Ac2-26 peptide-loaded PEGylated lipid nanoparticles for the remission of rheumatoid arthritis. Asian J Pharm Sci 2021;16:483-493
    [110] Singh MS, Ramishetti S, Landesman-Milo D, Goldsmith M, Chatterjee S, Palakuri R, et al. Therapeutic gene silencing using targeted lipid nanoparticles in metastatic ovarian cancer. Small 2021;17:e2100287
    [111] Li YM, Chakraborty A, Chen JJ, Xu QB. Combinatorial library of light-cleavable lipidoid nanoparticles for intracellular drug delivery. ACS Biomater Sci Eng 2019;5:2391-2398
    [112] Liu F, Yang L, Li YM, Junier A, Ma FH, Chen JJ, et al. In vitro and in vivo study of amphotericin B formulation with quaternized bioreducible lipidoids. ACS Biomater Sci Eng 2020;6:1064-1073
    [113] Oliva N, Almquist BD. Spatiotemporal delivery of bioactive molecules for wound healing using stimuli-responsive biomaterials. Adv Drug Deliv Rev 2020;161-162:22-41
    [114] Steele TWJ, Klok HA. Stimuli-sensitive and -responsive polymer biomaterials. Biomacromolecules 2018;19:1375-1377
    [115] Wang Y, Byrne JD, Napier ME, DeSimone JM. Engineering nanomedicines using stimuli-responsive biomaterials. Adv Drug Deliv Rev 2012;64:1021-1030
    [116] Katz JS, Burdick JA. Light-responsive biomaterials:development and applications. Macromol Biosci 2010;10:339-348
    [117] Li YM, Qian YF, Liu T, Zhang GY, Liu SY. Light-triggered concomitant enhancement of magnetic resonance imaging contrast performance and drug release rate of functionalized amphiphilic diblock copolymer micelles. Biomacromolecules 2012;13:3877-3886
    [118] Mura S, Nicolas J, Couvreur P. Stimuli-responsive nanocarriers for drug delivery. Nat Mater 2013;12:991-1003
    [119] Theato P, Sumerlin BS, O'Reilly RK, Epps TH. Stimuli responsive materials. Chem Soc Rev 2013;42:7055-7056
    [120] Qiao YT, Wan JQ, Zhou LQ, Ma W, Yang YY, Luo WX, et al. Stimuli-responsive nanotherapeutics for precision drug delivery and cancer therapy. Wires Nanomed Nanobi 2019;11:e1527
    [121] Dong Y, Siegwart DJ, Anderson DG. Strategies, design, and chemistry in siRNA delivery systems. Adv Drug Deliv Rev 2019;144:133-147
    [122] Melamed JR, Hajj KA, Chaudhary N, Strelkova D, Arral ML, Pardi N, et al. Lipid nanoparticle chemistry determines how nucleoside base modifications alter mRNA delivery. J Control Release 2021;341:206-214
    [123] Zhao W, Hou X, Vick OG, Dong Y. RNA delivery biomaterials for the treatment of genetic and rare diseases. Biomaterials 2019;217:119291
    [124] Suzuki Y, Ishihara H. Structure, activity and uptake mechanism of siRNA-lipid nanoparticles with an asymmetric ionizable lipid. Int J Pharm 2016;510:350-358
    [125] Gindy ME, DiFelice K, Kumar V, Prud'homme RK, Celano R, Haas RM, et al. Mechanism of macromolecular structure evolution in self-assembled lipid nanoparticles for siRNA delivery. Langmuir 2014;30:4613-4622
    [126] Whitehead KA, Dorkin JR, Vegas AJ, Chang PH, Veiseh O, Matthews J, et al. Degradable lipid nanoparticles with predictable in vivo siRNA delivery activity. Nat Commun 2014;5:4277
    [127] Wang Y, Wang J, Zhu D, Wang Y, Qing G, Zhang Y, et al. Effect of physicochemical properties on in vivo fate of nanoparticle-based cancer immunotherapies. Acta Pharm Sin B 2021;11:886-902
    [128] Huang Y, Yu Q, Chen Z, Wu W, Zhu Q, Lu Y. In vitro and in vivo correlation for lipid-based formulations:current status and future perspectives. Acta Pharm Sin B 2021;11:2469-2487
    [129] Ball RL, Bajaj P, Whitehead KA. Achieving long-term stability of lipid nanoparticles:examining the effect of pH, temperature, and lyophilization. Int J Nanomedicine 2017;12:305-315
    [130] Zhao P, Hou X, Yan J, Du S, Xue Y, Li W, et al. Long-term storage of lipid-like nanoparticles for mRNA delivery. Bioact Mater 2020;5:358-363
    [131] Zhang H, You X, Wang X, Cui L, Wang Z, Xu F, et al. Delivery of mRNA vaccine with a lipid-like material potentiates antitumor efficacy through Toll-like receptor 4 signaling. P Natl Acad Sci USA 2021;118:e2005191118
    [132] Lonez C, Vandenbranden M, Ruysschaert JM. Cationic lipids activate intracellular signaling pathways. Adv Drug Deliv Rev 2012;64:1749-1758
    [133] Viana IMO, Roussel S, Defrene J, Lima EM, Barabe F, Bertrand N. Innate and adaptive immune responses toward nanomedicines. Acta Pharm Sin B 2021;11:852-870
  • 加载中
计量
  • 文章访问数:  36
  • HTML全文浏览量:  26
  • PDF下载量:  0
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-12-28
  • 修回日期:  2022-03-17
  • 录用日期:  2022-04-11
  • 网络出版日期:  2023-03-17

目录

    /

    返回文章
    返回