留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Principles of Surface Potential Estimation in Mixed Electrolyte Solutions:Taking into Account Dielectric Saturation

Wen-xin Zou Jing Peng Wei-ning Xiu Xin-min Liu

邹温馨, 彭景, 修维宁, 刘新敏. 混合电解质溶液中考虑介电饱和度的表面电位评估原理[J]. 机械工程学报, 2020, 33(3): 334-342. doi: 10.1063/1674-0068/cjcp1907132
引用本文: 邹温馨, 彭景, 修维宁, 刘新敏. 混合电解质溶液中考虑介电饱和度的表面电位评估原理[J]. 机械工程学报, 2020, 33(3): 334-342. doi: 10.1063/1674-0068/cjcp1907132
Wen-xin Zou, Jing Peng, Wei-ning Xiu, Xin-min Liu. Principles of Surface Potential Estimation in Mixed Electrolyte Solutions:Taking into Account Dielectric Saturation[J]. JOURNAL OF MECHANICAL ENGINEERING, 2020, 33(3): 334-342. doi: 10.1063/1674-0068/cjcp1907132
Citation: Wen-xin Zou, Jing Peng, Wei-ning Xiu, Xin-min Liu. Principles of Surface Potential Estimation in Mixed Electrolyte Solutions:Taking into Account Dielectric Saturation[J]. JOURNAL OF MECHANICAL ENGINEERING, 2020, 33(3): 334-342. doi: 10.1063/1674-0068/cjcp1907132

Principles of Surface Potential Estimation in Mixed Electrolyte Solutions:Taking into Account Dielectric Saturation

doi: 10.1063/1674-0068/cjcp1907132
More Information
  • 摘要: 基于非线性泊松-玻尔兹曼方程,推导了混合电解质溶液中考虑介电饱和度的表面电位的解析表达式.近似解析解和精确数值解计算出的表面电位在很大范围的电荷密度和离子强度条件下均具有很好的一致性.当表面电荷密度大于0.30 C/m$ ^2 $时,介电饱和度对表面电位的影响变得尤为重要;当表面电荷密度小于0.30 C/m$ ^2 $时,可忽略介电饱和度的影响,即基于经典泊松-玻尔兹曼方程可获得有效的表面电位解析模型.因此,0.3 C/m$ ^2 $可作为是否考虑介电饱和度的颗粒临界表面电荷密度值.在低表面电荷密度时,考虑介质饱和度的表面电位解析模型可自然回归到经典泊松-玻尔兹曼理论的结果,得到的表面电位可以正确地预测一价和二价反离子之间的吸附选择性.

     

  • Figure  1.  The relationships between ion concentration ratio and surface potential in (a) 1:1+2:2, (b) 1:1+1:2 and (c) 1:1+2:1 electrolyte solutions. The symbols represent numerical surface potential and the solid lines represent analytical surface potential, $ f_i $/$ f_j $ is the ratio of bivalent ion concentration in mixed electrolytes with 0.1 mol/L ion strength.

    Figure  2.  The relationships between ion concentration and surface potential in (a) 1:1+2:2, (b) 1:1+1:2 and (c) 1:1+2:1 electrolyte solutions as $ f_i $ = $ f_j $ in different surface charge densities. The symbols represent numerical surface potential and the solid lines represent analytical results.

    Figure  3.  Surface potential of illite particle in NaCl+CaCl$ _2 $ electrolytes, the numerical and analytical results are calculated using Eq.(26) and Eq.(27), respectively. $ K_{ \rm{ \rm{Ca/Na}}} $ (= $ f_{ \rm{Na}} $$ N_{ \rm{Ca}} $/($ f_{ \rm{Ca}} $$ N_{ \rm{Na}} $)) is selectivity coefficient, $ f_{ \rm{Na}} $ and $ f_{ \rm{Ca}} $ are concentrations of Na$ ^+ $ and Ca$ ^{2+} $ in bulk solutions, $ N_{ \rm{Na}} $ and $ N_{ \rm{Ca}} $ are adsorption amount of Na$ ^+ $ and Ca$ ^{2+} $, respectively. The surface charge density of illite particle is 0.2895 C/m$ ^2 $, the concentrations of Na$ ^+ $ and Ca$ ^{2+} $ were determined by the binary Na-Ca exchange equilibrium on illite surface [35].

    Figure  4.  The relationships between surface charge density and surface potential in (a) 1:1+2:2, (b) 1:1+1:2 and (c) 1:1+2:1 electrolyte solutions at different $ f_i $/$ f_j $ values with ion strength of 0.1 mol/L. The symbols represent numerical surface potential and the solid lines represent analytical results

    Figure  5.  The relationships between surface charge density and surface potential in the presence and absence of dielectric saturation. The ratio of bivalent ion concentration in mixed electrolytes is equal to 1, i.e. $ f_i $ = $ f_j $ = $ f $, (a) $ f $ = 0.001 mol/L and (b) $ f $ = 0.1 mol/L. The solid lines and symbols represent the analytical surface potential in the presence and absence of dielectric saturation, respectively

    Figure  6.  Comparison between the experimental values and the predicted values of selectivity coefficient $ K_{ \rm{Mg/Na}} $ on Altamont soil. The experimental data were cited from Fletcher's work [42] and the dashed line is the 1:1 reference line

  • [1] G. Trefalt, S. H. Behrens, and M. Borkovec, Langmuir 32 380 (2016). doi: 10.1021/acs.langmuir.5b03611
    [2] M. A. Brown, Z. Abbas, A. Kleibert, R. G. Green, A. Goel, S. May, and T. M. Squires, Phys. Rev. X 6 011007 (2016).
    [3] E. C. Y. Yan, Y. Liu, and K. B. Eisenthal, J. Phys. Chem. B 102 6331 (1998).
    [4] Y. Liu, E. C. Yan, X. Zhao, and K. B. Eisenthal, Langmuir 17 2063 (2001). doi: 10.1021/la0011634
    [5] H. Li, C. L. Qing, S. Q. Wei, and X. J. Jiang, J. Colloid Interface Sci. 275 172 (2004). doi: 10.1016/j.jcis.2003.12.055
    [6] J. Hou and H. Li, Soil Sci. Soc. Am. J. 73 1658 (2009). doi: 10.2136/sssaj2008.0017
    [7] X. Liu, R. Tian, R. Li, W. Ding, H. Li, and R. Yuan, Proceedings A 471 20150064 (2015).
    [8] P. F. Low, Soil Sci. Soc. Am. J. 45 1074 (1981). doi: 10.2136/sssaj1981.03615995004500060013x
    [9] X. Liu, W. Ding, R. Tian, W. Du, and H. Li, Soil Sci. Soc. Am. J. 81 268 (2017). doi: 10.2136/sssaj2016.08.0261
    [10] X. Liu, H. Li, R. Li, D. Xie, J. Ni, and L. Wu, Sci. Rep. 4 5047 (2014).
    [11] M. C. F. Wander and A. E. Clark, J. Phys. Chem. C 112 19986 (2008). doi: 10.1021/jp803642c
    [12] Y. Nakayama and D. Andelman, J. Chem. Phys. 142 044706 (2015). doi: 10.1063/1.4906319
    [13] A. Gupta and H. A. Stone, Langmuir 34 11971 (2018). doi: 10.1021/acs.langmuir.8b02064
    [14] J. Peng, W. X. Zou, R. Tian, H. Li, and X. M. Liu, Chin. Phys. B 27 126801 (2018). doi: 10.1088/1674-1056/27/12/126801
    [15] R. L. Fulton, J. Chem. Phys 130 204503 (2009). doi: 10.1063/1.3139211
    [16] D. L. Parkhurst and C. A. J. Appelo, U.S. Geological Survey Techniques and Methods, USGS, (2013).
    [17] A. Abrashkin, D. Andelman, and H. Orland, Phys. Rev. Lett. 99 077801 (2007). doi: 10.1103/PhysRevLett.99.077801
    [18] D. C. Grahame, J. Chem. Phys. 18 903 (1950). doi: 10.1063/1.1747807
    [19] G. H. Bolt, J. Colloid Sci. 10 206 (1955). doi: 10.1016/0095-8522(55)90027-1
    [20] L. Daniels, M. Scott, and Z. L. Mi${{\rm{\mathord{\buildrel{\lower3pt\hbox{$\scriptscriptstyle\smile$}} \over s} }}} $ković J. Chem. Phys. 146 094101 (2017). doi: 10.1063/1.4976991
    [21] D. Ben-Yaakov, D. Andelman, and R. Podgornik, J. Chem. Phys. 134 074705 (2011). doi: 10.1063/1.3549915
    [22] N. Gavish and K. Promislow, Phys. Rev. E 94 023115 (2016). doi: 10.1103/PhysRevE.94.023115
    [23] J. López-García, J. Horno, and C. Grosse, J. Colloid Interface Sci. 496 531 (2017). doi: 10.1016/j.jcis.2017.02.043
    [24] P. Hünenberger and M. Reif, Single-Ion Solvation: Experimental and Theoretical Approaches to Elusive Thermodynamic Quantities, Vol.3, Royal Society of Chemistry, 664 (2011).
    [25] P. Sharma and Z. L. Mi${{\rm{\mathord{\buildrel{\lower3pt\hbox{$\scriptscriptstyle\smile$}}\over s} }}} $ković Phys. Rev. B 90 125415 (2014). doi: 10.1103/PhysRevB.90.125415
    [26] L. Daniels, M. Scott, and Z. L. Mi${{\rm{\mathord{\buildrel{\lower3pt\hbox{$\scriptscriptstyle\smile$}}\over s} }}} $ković Chem. Phys. Lett. 701 43 (2018). doi: 10.1016/j.cplett.2018.04.030
    [27] Y. Uematsu, R. R. Netz, and D. J. Bonthuis, J. Phys.: Condens. Matter 30 064002 (2018). doi: 10.1088/1361-648X/aaa4d4
    [28] X. Liu, R. Tian, W. Du, R. Li, W. Ding, and H. Li, Appl. Clay Sci. 169 112 (2019). doi: 10.1016/j.clay.2018.12.022
    [29] E. Gongadze, U. van Rienen, V. Kralj-Igli${{\rm{\mathord{\buildrel{\lower3pt\hbox{$\scriptscriptstyle\smile$}} \over c} }}} $ and A. Igli${{\rm{\mathord{\buildrel{\lower3pt\hbox{$\scriptscriptstyle\smile$}} \over c} }}} $ Gen. Physiol. Biophys. 30 130 (2011). doi: 10.4149/gpb_2011_02_130
    [30] S. Y. Mashayak and N. R. Aluru, J. Chem. Phys. 146 044108 (2017). doi: 10.1063/1.4973934
    [31] W. Ding, L. Xinmin, F. Hu, H. Zhu, Y. Luo, S. Li, and H. Li, J. Hydrol. 568 492 (2019). doi: 10.1016/j.jhydrol.2018.11.017
    [32] X. Liu, H. Li, W. Du, R. Tian, R. Li, and X. Jiang, J. Phys. Chem. C 117 62451 (2013).
    [33] Y. T. Li, X. M. Liu, R. Tian, W. Q. Ding, W. N. Xiu, L. L. Tang, J. Zhang, and H. Li, Acta Phys. Chim. Sin. 33 1998 (2017).
    [34] Y. Zhou, G. Stell, and H. L. Friedman, J. Chem. Phys. 89 3836 (1988). doi: 10.1063/1.455704
    [35] G. H. Bolt, Soil Sci. 79 267 (1955). doi: 10.1097/00010694-195504000-00004
    [36] H. Li, J. Hou, X. Liu, and L. Wu, Soil Sci. Soc. Am. J. 75 2128 (2011). doi: 10.2136/sssaj2010.0301
    [37] H. Boroudjerdi, Y. W. Kim, A. Naji, R. R. Netz, X. Schlagberger, and A. Serr, Phys. Rep. 416 129 (2005). doi: 10.1016/j.physrep.2005.06.006
    [38] T. B. Kinraide and P. Wang, J. Exp. Bot. 61 2507 (2010). doi: 10.1093/jxb/erq082
    [39] M. Mullet, P. Fievet, J. C. Reggiani, and J. Pagetti, J. Membr. Sci. 123 255 (1997). doi: 10.1016/S0376-7388(96)00220-7
    [40] X. Liu, H. Li, R. Li, R. Tian, and C. Xu, Analyst 138 1122 (2013). doi: 10.1039/C2AN36069A
    [41] S. Goldberg, S. M. Lesch, D. L. Suarez, and N. T. Basta, Soil Sci. Soc. Am. J. 69 1389 (2005). doi: 10.2136/sssaj2004.0393
    [42] P. Fletcher, G. Sposito, and C. S. LeVesque, Soil Sci. Soc. Am. J. 48 1016 (1984). doi: 10.2136/sssaj1984.03615995004800050013x
    [43] I. S. Sidhu, A. L. Frischknecht, and P. J. Atzberger, ACS Omega 3 11340 (2018). doi: 10.1021/acsomega.8b01393
    [44] J. S. Sin, J. Chem. Phys. 147 214702 (2017). doi: 10.1063/1.5002607
    [45] D. Shiby and E. Ruckenstein, Chem. Phys. Lett. 100 277 (1983). doi: 10.1016/0009-2614(83)87292-3
    [46] D. F. Parsons and B. W. Ninham, Langmuir 26 1816 (2010). doi: 10.1021/la902533x
    [47] D. Frydel, J. Chem. Phys. 134 234704 (2011). doi: 10.1063/1.3598476
    [48] M. A. Brown, G. V. Bossa, and S. May, Langmuir 31 11477 (2015). doi: 10.1021/acs.langmuir.5b02389
    [49] M. Deserno, F. F. Jiménez-ángeles, C. Holm, and M. Lozada-Cassou, J. Phys. Chem. B 105 10983 (2001). doi: 10.1021/jp010861+
    [50] F. Jiménez-ángeles and M. Lozada-Cassou, J. Phys. Chem. B 108 7286 (2004). doi: 10.1021/jp036464b
    [51] G. I. Guerrero-García, E. González-Tovar, M. Chávez-Páez, and M. Lozada-Cassou, J. Chem. Phys. 132, 054903 (2010). doi: 10.1063/1.3294555
    [52] A. Naji, M. Ghodrat, H. Komaie-Moghaddam, and R. Podgornik, J. Chem. Phys. 141 174704 (2014). doi: 10.1063/1.4898663
  • 加载中
图(6)
计量
  • 文章访问数:  165
  • HTML全文浏览量:  78
  • PDF下载量:  1
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-07-06
  • 录用日期:  2019-09-19
  • 发布日期:  2020-03-17

目录

    /

    返回文章
    返回