留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Fabrication of Melamine/Tb\begin{document}$ ^{\textbf{3+}} $\end{document}-Intercalated Polydiacetylene Nanosheets and Their Thermochromic Reversibility Test

Qing Wang Gang Wang Xia-yun Huang Dao-yong Chen

王青, 王刚, 黄霞芸, 陈道勇. 三聚氰胺/Tb\begin{document}$ ^{\bf{3+}} $\end{document}插层的聚二炔纳米片的制备及其热致变色可逆性研究 测试[J]. 机械工程学报, 2020, 33(3): 357-364. doi: 10.1063/1674-0068/cjcp1907143
引用本文: 王青, 王刚, 黄霞芸, 陈道勇.

三聚氰胺/Tb

\begin{document}$ ^{\bf{3+}} $\end{document}

插层的聚二炔纳米片的制备及其热致变色可逆性研究 测试

[J]. 机械工程学报, 2020, 33(3): 357-364. doi: 10.1063/1674-0068/cjcp1907143
Qing Wang, Gang Wang, Xia-yun Huang, Dao-yong Chen. Fabrication of Melamine/Tb\begin{document}$ ^{\textbf{3+}} $\end{document}-Intercalated Polydiacetylene Nanosheets and Their Thermochromic Reversibility Test[J]. JOURNAL OF MECHANICAL ENGINEERING, 2020, 33(3): 357-364. doi: 10.1063/1674-0068/cjcp1907143
Citation: Qing Wang, Gang Wang, Xia-yun Huang, Dao-yong Chen. Fabrication of Melamine/Tb\begin{document}$ ^{\textbf{3+}} $\end{document}-Intercalated Polydiacetylene Nanosheets and Their Thermochromic Reversibility Test[J]. JOURNAL OF MECHANICAL ENGINEERING, 2020, 33(3): 357-364. doi: 10.1063/1674-0068/cjcp1907143

Fabrication of Melamine/Tb\begin{document}$ ^{\textbf{3+}} $\end{document}-Intercalated Polydiacetylene Nanosheets and Their Thermochromic Reversibility Test

doi: 10.1063/1674-0068/cjcp1907143
  • 摘要: 聚二炔(PDA)是一类具有层状结构的共轭聚合物.在插层过程中,客体组分可插入PDA的层间,形成插层结构.在这些结构中,一部分插层复合物具有近乎完美的组装结构,并展现出完全可逆的热致变色特性.迄今为止,已报到的具有近乎完美组装结构的PDA复合物中仅成功插入了单个客体组分.本文选择其一侧的羧基可与Tb\begin{document}$ ^{3+} $\end{document}离子或三聚氰胺(MAs)作用的10,12-二十五烷二炔酸(PCDA)作为单体.当PCDA,MA和Tb\begin{document}$ ^{3+} $\end{document}投料摩尔比为3:267:1时,虽然体系中存在大大过量的MA,仅有Tb$ ^{3+} $离子插入了PDA层间,该复合物具有近乎完美插层结构,表现出完全可逆的热致变色特性.当PCDA,MA和Tb$ ^{3+} $投料摩尔比为3:267:0.6时,此时Tb$ ^{3+} $和MAs都插入了PDA的层间,该复合物存在近乎完美的结构区域和一些不完美的缺陷区域(例如:MA插层区域以及区域-区域边界处).因此,其仅表现出部分可逆的热致变色特性.其近乎完美的结构区域中的共轭主链仍能可逆地恢复至其初始构象,而缺陷区域的共轭主链则很难可逆地恢复至其初始构象.

     

  • Scheme 1.  Illustration of the preparation procedure of Tb$ ^{3+} $-intercalated PCDA and MA/Tb$ ^{3+} $-intercalated PCDA nano- sheet. The PCDA-MA-Tb$ ^{3+} $ coassemblies were firstly prepared. After annealed at 68 $ ^{\circ} $C for 6 h, the coassemblies were re- organized to Tb$ ^{3+} $-intercalated or MA/Tb$ ^{3+} $-intercalated PCDA depending on the amount of PCDA, MA, and Tb$ ^{3+} $ ion added. In the MA/Tb$ ^{3+} $-intercalated PCDA, there existed Tb$ ^{3+} $-intercalated and MA-intercalated domains.

    Figure  1.  (a) DSC curve of pure PCDA and Tb$ ^{3+} $-intercalated PCDA, (b) TEM image of Tb$ ^{3+} $-intercalated PCDA nanosheets, and (c) distribution of hydrodynamic diameter ($ D_ \rm{h} $) of Tb$ ^{3+} $-intercalated PCDA nanosheets. The feeding molar ratio of PCDA, MA, and Tb$ ^{3+} $ ion is 3:267:1.

    Figure  2.  (a) XRD patterns of MA-intercalated PCDA, Tb$ ^{3+} $-intercalated PCDA and MA/Tb$ ^{3+} $-intercalated PCDA, (b) TEM image of MA/Tb$ ^{3+} $-intercalated PCDA nanosheets, (c) distribution of hydrodynamic diameter ($ D_ \rm{h} $) of MA/Tb$ ^{3+} $-intercalated PCDA nanosheet, and (d) DSC curve of PCDA, Tb$ ^{3+} $-intercalated PCDA and MA/Tb$ ^{3+} $-intercalated PCDA. The feeding molar ratio of PCDA, MA, and Tb$ ^{3+} $ ion is 3:267:0.6.

    Figure  3.  (a) UV-Vis spectra of Tb$ ^{3+} $-intercalated poly-PCDA nanosheet suspension at different temperatures. The abrupt shift of $ \lambda_{ \rm{max}} $ to ca. 550 nm occurred at 80 $ ^{\circ} $C. The dashed line represents the spectrum of the suspension after cooling to 25 $ ^{\circ} $C from 90 $ ^{\circ} $C, indicating the complete reversibility of nanosheet suspension. (b) Colorimetric response (CR) of Tb$ ^{3+} $-intercalated poly-PCDA nanosheet suspension demonstrated its completely reversible thermochromism. The red nanosheet suspension at 90 $ ^{\circ} $C could fully return to the initial blue color when it was cooled to 25 $ ^{\circ} $C during the 20th heating-cooling cycles. (c) UV-Vis spectra of MA/Tb$ ^{3+} $-intercalated poly-PCDA nanosheet suspension during the 1st heating-cooling cycle between 25 $ ^{\circ} $C and 90 $ ^{\circ} $C. (d) CR of nanosheet suspension demonstrated its partial thermochromic reversibility. The red nanosheet suspension at 90 $ ^{\circ} $C yielded to purple color when it was cooled to 25 $ ^{\circ} $C at the 1st heating-cooling cycle. During the 2nd$ - $10th heating-cooling cycles, the suspension alternately switched between purple and red color.

    S1.   Elemental analysis and ICP-AES results of Tb3+-intercalated PCDA and MA/Tb3+-intercalated PCDA nanosheet

    下载: 导出CSV
  • [1] K. S. Mali, N. Pearce, S. De Feyter, and N. R. Champness, Chem. Soc. Rev. 46 2520 (2017). doi: 10.1039/C7CS00113D
    [2] J. M. Kim, J. S. Lee, H. Choi, D. Sohn, and D. J. Ahn, Macromolecules 38 9366 (2005). doi: 10.1021/ma051551i
    [3] U. Jonas, K. Shah, S. Norvez, and D. H. Charych, J. Am. Chem. Soc. 121 4580 (1999). doi: 10.1021/ja984190d
    [4] Z. Yuan and T. W. Hanks, Polymer 49 5023 (2008). doi: 10.1016/j.polymer.2008.09.008
    [5] S. Wu, L. Pan, Y. J. Huang, N. Yang, and Q. J. Zhang, Soft Matter 14 6929 (2018). doi: 10.1039/C8SM01282B
    [6] C. Khanantonga, N. Charoenthaia, S. Wacharasindhu, M. Sukwattanasinitt, N. Traiphol, and R. Traiphol, J. Ind. Eng. Chem. 58 258 (2018). doi: 10.1016/j.jiec.2017.09.035
    [7] Y. Ishijima, H. Imai, and Y. Oaki, Chem. 3 1 (2017). doi: 10.1016/j.chempr.2017.06.021
    [8] H. Terada, H. Imai, and Y. Oaki, Adv. Mater. 30 1801121 (2018). doi: 10.1002/adma.201801121
    [9] X. Q. Chen, G. D. Zhou, X. J. Peng, and J. Yoon, Chem. Soc. Rev. 41 4610 (2012). doi: 10.1039/c2cs35055f
    [10] X. M. Sun, T. Chen, S. Q. Huang, L. Li, and H. S. Peng, Chem. Soc. Rev. 39 4244 (2010). doi: 10.1039/c001151g
    [11] S. Wacharasindhu, S. Montha, J Boonyiseng, A Potisatityuenyong, C. Phollookin, G. Tumcharern, and M. Sukwattanasinitt, Macromolecules 43 716 (2010). doi: 10.1021/ma902282c
    [12] T. V. Oliveira, N. F. F. Soares, J. S. R. Coimbra, N. J. Andrade, L. G. Moura, E. A. A. Medeiros, and H. S. Medeiros, Sens. Actuators B: Chem. 221 653 (2015). doi: 10.1016/j.snb.2015.06.130
    [13] M. Takeuchi, H. Imai, and Y. Oaki, ACS Appl. Mater. Interfaces 9 16457 (2017).
    [14] M. Takeuchi, H. Imai, and Y. Oaki, J. Mater. Chem. C 5 8250 (2017). doi: 10.1039/C7TC02218B
    [15] S. Chae, J. P. Lee, and J. M. Kim, Adv. Funct. Mater. 26 1769 (2016). doi: 10.1002/adfm.201504845
    [16] M. Okaniwa, Y. Oaki, and H. Imai, Adv. Funct. Mater. 26 3463 (2016). doi: 10.1002/adfm.201600560
    [17] Y. S. Yao, K. Y. Fu, X. Y. Huang, and D. Y. Chen, Chin. J. Chem. 35 1678 (2017). doi: 10.1002/cjoc.201700318
    [18] K. Y. Fu and D. Y. Chen, Chin. J. Chem. Phys. 27 465 (2014). doi: 10.1063/1674-0068/27/04/465-470
    [19] J. Guo, K. Y. Fu, Z. B. Zhang, L. Y. Yang, Y. C. Huang, C. I. Huang, L. Zhu, and D. Y. Chen, Polymer 105 440 (2016). doi: 10.1016/j.polymer.2016.07.035
    [20] Y. Gu, W. Q. Cao, L. Zhu, D. Y. Chen, and M. Jiang, Macromolecules 41 2299 (2008). doi: 10.1021/ma800023f
    [21] J. Guo, L. Zhu, M. Jiang, and D. Y. Chen, Langmuir 27 6651 (2011). doi: 10.1021/la2007233
    [22] K. Y. Fu, Master Thesis Shanghai: Fudan University, No.052044007 (2014).
  • 加载中
图(4) / 表(1)
计量
  • 文章访问数:  167
  • HTML全文浏览量:  40
  • PDF下载量:  0
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-07-26
  • 录用日期:  2019-08-30
  • 发布日期:  2020-03-17

目录

    /

    返回文章
    返回