留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Six-Dimensional $ab$ $ initio$ Potential Energy Surface and Bound States for He-H$ _\textbf{2} $S Complex

Chao-ying Han Ting Jiang Hua Zhu Hong-jun Fan

Chao-ying Han, Ting Jiang, Hua Zhu, Hong-jun Fan. Six-Dimensional $ab$ $ initio$ Potential Energy Surface and Bound States for He-H$ _\textbf{2} $S Complex[J]. JOURNAL OF MECHANICAL ENGINEERING, 2020, 33(3): 319-326. doi: 10.1063/1674-0068/cjcp1907145
Citation: Chao-ying Han, Ting Jiang, Hua Zhu, Hong-jun Fan. Six-Dimensional $ab$ $ initio$ Potential Energy Surface and Bound States for He-H$ _\textbf{2} $S Complex[J]. JOURNAL OF MECHANICAL ENGINEERING, 2020, 33(3): 319-326. doi: 10.1063/1674-0068/cjcp1907145

Six-Dimensional $ab$ $ initio$ Potential Energy Surface and Bound States for He-H$ _\textbf{2} $S Complex

doi: 10.1063/1674-0068/cjcp1907145
  • 摘要: 采用[CCSD(T)]-F12a/aug-cc-pVTZ方法,同时在基组中引入中心键函数(3s3p2d1f1g)构建了He-H$ _2 $S复合物的高精度六维势能面. 除分子间振动坐标,同时考虑了H$ _2 $S分子内的$ \nu_1 $对称伸缩振动$ Q_1 $正则模、$ \nu_2 $弯曲振动$ Q_2 $正则模和$ \nu_3 $反对称伸缩振动$ Q_3 $正则模三种振动模式. 将计算得到的六维势能面在$ Q_1 $,$ Q_2 $和$ Q_3 $方向上分别做积分得到H$ _2 $S单体分别处于振动基态、$ \nu_2 $和$ \nu_3 $激发态下的He-H$ _2 $S的三个振动平均势能面. 计算结果表明,每个平均势能面都有一个T 形全局极小值、一个平面局部极小值、两个平面内鞍点和一个平面外鞍点. 全局极小值的几何构型位于$ R $ = 3.46 Å,$ \theta $ = 109.9$ ^\circ $和$ \varphi $ = 0.0$ ^\circ $,势阱深度为35.301 cm$ ^{-1} $. 在径向部分采用离散变量表象法和角度部分采用有限基组表象法并结合Lanczos循环算法计算了He-H$ _2 $S的振转能级和束缚态. 计算发现He-($ para $-H$ _2 $S)在H$ _2 $S的$ \nu_2 $和$ \nu_3 $区域的带心位移分别为 0.025 cm$ ^{-1} $ 和0.031 cm$ ^{-1} $,而He-($ ortho $-H$ _2 $S)的带心位移分别为0.041 cm$ ^{-1} $ 和0.060 cm$ ^{-1} $,都表现为蓝移.

     

  • Figure  1.  Contour plots of the potential energy surface for He-H$ _2 $S with H$ _2 $S at the vibrational ground state: (a) $ \varphi $ is fixed at 0.0$ ^{\circ} $, and (b) $ R $ is fixed at 3.46 Å

    Figure  2.  Radial position (upper) and energy (lower) along the minimum energy path for He-H$ _2 $S with H$ _2 $S at the vibrational ground state as well as the $ \nu_2 $ and $ \nu_3 $ excited states as functions of angle $ \theta $ for optimized values of $ \varphi $ and $ R $

    Figure  3.  The wave functions for the lower energy levels of He-(para-H$ _2 $S): (left panel) as a function of $ R $ and $ \theta $, (right panel) as a function of $ \theta $ and $ \varphi $, respectively.

    Figure  4.  The wave functions for the lower energy levels of He-(ortho-H$ _2 $S). Left panel: as functions of $ R $ and $ \theta $, right panel: as functions of $ \theta $ and $ \varphi $, respectively.

    Table  Ⅰ.   Characteristic points (R in Å, θ and φ in degree) and the well depths (in cm−1) of the He-H2S with H2S at the vibrational ground and excited states.

    下载: 导出CSV

    Table  Ⅱ.   The calculated energy levels for He-H$ _2 $S with H$ _2 $S at the vibrational ground and excited states (labeled with $ K $($ j_{k_ak_c} $)$ ^{J+P} $). The $ ^* $ means resonance states.

    下载: 导出CSV

    Table  Ⅲ.   The rovibrational energy comparison for He-H$ _2 $S on the $ \Sigma $(0$ _{00} $)$ ^ \rm{e} $ and $ \Sigma $(1$ _{01} $)$ ^ \rm{e} $ states with H$ _2 $S at the vibrational ground and excited states (in cm$ ^{-1} $).

    下载: 导出CSV
  • [1] R. Lascola and D. J. Nesbitt, J. Chem. Phys. 95, 7917 (1991). doi: 10.1063/1.461320
    [2] S. Hirabayashi and K. M. T. Yamada, Chem. Phys. Lett. 418, 323 (2006). doi: 10.1016/j.cplett.2005.11.011
    [3] B. Yang and P. C. Stancil, J. Chem. Phys. 126, 154306 (2007). doi: 10.1063/1.2720390
    [4] B. Yang, M. Nagao, W. Satomi, M. Kimura, and P. C. Stancil, Astrophys. J. 765, 77 (2013). doi: 10.1088/0004-637X/765/2/77
    [5] J. M. Flaud and C. Camy-Peyr, Can. J. Phys. 61, 1462 (1983). http://med.wanfangdata.com.cn/Paper/Detail/PeriodicalPaper_PM19378976
    [6] R. P. Wayne, Chemistry of Atmospheres, Oxford, UK: Clarendon Press, (1991).
    [7] R. C. Cohen, K. L. Busarow, K. B. Laughlin, G. A. Blake, M. Havenith, Y. T. Lee, and R. J. Saykally, J. Chem. Phys. 89, 4494 (1988).
    [8] G. T. Fraser, F. J. Lovas, R. D. Suenram, and K. Matsumura, J. Mol. Spectros. 144, 97 (1990). doi: 10.1016/0022-2852(90)90310-M
    [9] R. C. Cohen, K. L. Busarow, Y. T. Lee, and R. J. Saykally, J. Chem. Phys. 92, 169 (1990). doi: 10.1063/1.458459
    [10] D. J. Nesbitt and R. Lascola, J. Chem. Phys. 97, 8096 (1992). doi: 10.1063/1.463431
    [11] R. C. Cohen and R. J. Saykally, J. Chem. Phys. 98, 6007 (1993). doi: 10.1063/1.464841
    [12] J. V. Wijngaarden, and W. Jäger, Mol. Phys. 98, 1575 (2000). https://www.researchgate.net/publication/234994869_Microwave_spectra_of_the_Ar-ND3_van_der_Waals_complex_and_its_partially_protonated_isotopomers
    [13] Q. Wen and W. Jäger, J. Phys. Chem. A 110, 7560 (2006). doi: 10.1021/jp0619890
    [14] S. Li, R. Zheng, Y. Zhu, and C. X. Duan, J. Chem. Phys. 135, 134304 (2011). doi: 10.1063/1.3644776
    [15] R. Viswanathan and T. R. Dyke, J. Chem. Phys. 82, 1674 (1985). doi: 10.1063/1.448399
    [16] H. S. Gutowsky, T. Emilsson, and E. Arunan, J. Chem. Phys. 106, 5309 (1997). doi: 10.1063/1.473066
    [17] Y. Liu and W. Jäger, Mol. Phys. 100, 611 (2002). doi: 10.1080/00268970110099576
    [18] G. Chal/asiński, M. M. Szczcȩśniak, and S. Scheiner, J. Chem. Phys. 94, 2807 (1991). doi: 10.1063/1.459857
    [19] M. Bulski, P. E. S. Wormer, and A. van der Avoird, J. Chem. Phys. 94, 8096 (1991). doi: 10.1063/1.460092
    [20] K. Patkowski, T. Korona, R. Moszynski, B. Jeziorski, and K. Szalewicz, J. Mol. Struct. 591, 231 (2002). doi: 10.1016/S0166-1280(02)00244-0
    [21] X. L. Sun, Y. Hu, and H. Zhu, J. Chem. Phys. 138, 204312 (2013). doi: 10.1063/1.4807497
    [22] J. Makarewicz, J. Chem. Phys. 129, 184310 (2008). doi: 10.1063/1.3009270
    [23] L. Wang and M. H. Yang, J. Chem. Phys. 129, 174305 (2008). doi: 10.1063/1.3005645
    [24] G. de Oliveira and C. E. Dykstra, J. Chem. Phys. 106, 5316 (1997). doi: 10.1063/1.473562
    [25] D. Cappelletti, A. F. Vilela, P. R. Barreto, R. Gargano, F. Pirani, and V. Aquilanti, J. Chem. Phys. 125, 133111 (2006). doi: 10.1063/1.2218513
    [26] J. P. Lei, M. Y. Xiao, Y. Z. Zhou, and D. Q. Xie, J. Chem. Phys. 136, 214307 (2012). doi: 10.1063/1.4725715
    [27] J. P. Lei, Y. Z. Zhou, and D. Q. Xie, J. Chem. Phys. 136, 084310 (2012). doi: 10.1063/1.3689443
    [28] D. Hou, Y. T. Ma, X. L. Zhang, and H. Li, J. Chem. Phys. 144, 014301 (2016). doi: 10.1063/1.4939089
    [29] D. Hou, Y. T. Ma, X. L. Zhang, and H. Li, J. Mol. Spectrosc. 330, 217 (2016). doi: 10.1016/j.jms.2016.07.009
    [30] X. Liu, D. Hou, J. Thomas, H. Li, and Y. Xu, J. Mol. Spectrosc. 330, 236 (2016). doi: 10.1016/j.jms.2016.08.011
    [31] H. Guo, R. Q. Chen, and D. Q. X, J. Theo. Comput. Chem. 1, 173 (2002). doi: 10.1142/S0219633602000129
    [32] T. Jiang, C. Y. Han, and H. Zhu, Mol. Phys. 118, e1612958 (2020). doi: 10.1080/00268976.2019.1612958
    [33] H. Wei and T. Carrington, J. Chem. Phys. 97, 3029 (1992). doi: 10.1063/1.463044
    [34] D. E. Woon and T. H. Dunning, J. Chem. Phys. 98, 1358 (1993). doi: 10.1063/1.464303
    [35] T. B. Pedersen and B. Fernández, J. Chem. Phys. 115, 8431 (2001). doi: 10.1063/1.1398102
    [36] T. Yuan and H. Zhu, Theor. Chem. Acc. 133, 1 (2014).
    [37] J. M. Liu, Y. Zhai, and H. Li, J. Chem. Phys. 147, 044313 (2017). doi: 10.1063/1.4996086
    [38] S. F. Boys and F. Bernardi, Mol. Phys. 19, 553 (1970). doi: 10.1080/00268977000101561
    [39] H. J. Werner, P. J. Knowles, R. D. Amos, A. Berning, D. L. Cooper, M. J. O. Deegan, A. J. Dobbyn, F. Eckert, S. T. Elbert, C. Hampel, R. Lindh, A. W. Lloyd, W. Meyer, A. Nicklass, K. Peterson, R. Pitzer, A. J. Stone, P. R. Taylor, M. E. Mura, P. Pulay, M. Schutz, H. Stoll, and T. Thoorstcinsso, MOLPRO, version 2000.1, a Package of ab initio Programs 2000. http://www.molpro.net.
    [40] I. N. Kozin and P. Jensen, J. Mol. Spectrosc. 163, 483 (1994). doi: 10.1006/jmsp.1994.1041
    [41] Ala'a A. A. Azzam, S. N. Yurchenko, J. Tennyson, M. Aline, M. Drumel, and O. Pirali, J. Quant. Spectrosc. Radiat. Transfer. 130, 341 (2013). doi: 10.1016/j.jqsrt.2013.05.035
    [42] S. Y. Lin and H. Guo, J. Chem. Phys. 117, 5183 (2002). doi: 10.1063/1.1500731
    [43] C. Leforestier, J. Chem. Phys. 101, 7357 (1994). doi: 10.1063/1.468455
    [44] D. T. Colbert and W. H. Miller, J. Chem. Phys. 96, 1982 (1992). doi: 10.1063/1.462100
    [45] C. J. Lanczos, Res. Natl. Bur. Stand. 45, 255 (1950). doi: 10.6028/jres.045.026
    [46] G. Cazzoli and C. Puzzarini, J. Mol. Spectros. 298, 31 (2014). doi: 10.1016/j.jms.2014.02.002
  • 加载中
图(4) / 表(3)
计量
  • 文章访问数:  46
  • HTML全文浏览量:  38
  • PDF下载量:  0
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-07-27
  • 录用日期:  2019-10-16
  • 发布日期:  2020-03-17

目录

    /

    返回文章
    返回