留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Electronic Stability of Bimetallic Au$ _{\textbf{2}} $@Cu$ _{\textbf{6}} $ Nanocluster: Closed-Shell Interaction and Multicenter Bonding

Ying-ying Ma Yuan-qin Yu Long-jiu Cheng

马莹莹, 喻远琴, 程龙玖. 双金属纳米团簇Au$ _\bf{2} $$ @ $Cu$ _\bf{6} $电子结构的稳定性:闭壳层作用和多中心键[J]. 机械工程学报, 2020, 33(3): 327-333. doi: 10.1063/1674-0068/cjcp1912200
引用本文: 马莹莹, 喻远琴, 程龙玖. 双金属纳米团簇Au$ _\bf{2} $$ @ $Cu$ _\bf{6} $电子结构的稳定性:闭壳层作用和多中心键[J]. 机械工程学报, 2020, 33(3): 327-333. doi: 10.1063/1674-0068/cjcp1912200
Ying-ying Ma, Yuan-qin Yu, Long-jiu Cheng. Electronic Stability of Bimetallic Au$ _{\textbf{2}} $@Cu$ _{\textbf{6}} $ Nanocluster: Closed-Shell Interaction and Multicenter Bonding[J]. JOURNAL OF MECHANICAL ENGINEERING, 2020, 33(3): 327-333. doi: 10.1063/1674-0068/cjcp1912200
Citation: Ying-ying Ma, Yuan-qin Yu, Long-jiu Cheng. Electronic Stability of Bimetallic Au$ _{\textbf{2}} $@Cu$ _{\textbf{6}} $ Nanocluster: Closed-Shell Interaction and Multicenter Bonding[J]. JOURNAL OF MECHANICAL ENGINEERING, 2020, 33(3): 327-333. doi: 10.1063/1674-0068/cjcp1912200

Electronic Stability of Bimetallic Au$ _{\textbf{2}} $@Cu$ _{\textbf{6}} $ Nanocluster: Closed-Shell Interaction and Multicenter Bonding

doi: 10.1063/1674-0068/cjcp1912200
  • 摘要: 采用密度泛函理论方法,研究了近年来实验报道的双金属纳米团簇Au$ _2 $$ @ $Cu$ _6 $的电子结构和成键特征.一般认为,纳米团簇Au$ _2 $$ @ $Cu$ _6 $中(CuSH)$ _6 $环和(Au$ _2 $PH$ _3 $)$ _2 $两部分之间的相互作用可以看作是d$ ^{10} $-$ \sigma $闭壳相互作用.然而,化学成键分析表明,两个部分之间存在一个十中心两电子(10c-2e)的多中心键.将该结构与其他双金属纳米团簇M$ _2 $$ @ $Cu$ _6 $(M = Ag、Cu、Zn、Cd、Hg)做对比分析,结果表明除了d$ ^{10} $-$ \sigma $闭壳层相互作用外,多中心键也是配合物的电子结构稳定性的原因.这一结果将为理解闭壳层相互作用提供有利的帮助.

     

  • Figure  1.  Optimized structures of (a) hexagonal (CuSH)$ _{6} $ moiety and (b) (AuPH$ _{3} $)$ _{2} $(CuSH)$ _{6} $ complexes at the TPSSTPSS-D3/def2-TZVP level. The bond lengths are labeled in Å. $ E $$ _{\rm{HL}} $ gives the HOMO–LUMO gaps. For color image, see the online version

    Figure  2.  AdNDP chemical bonding analysis for (a) (AuPH$ _{3} $)$ _{2} $ monomer and (b) (AuPH$ _{3} $)$ _{2} $@(AuSH)$ _{6} $ complex. For color image, see the online version

    Figure  3.  AdNDP chemical bonding analysis for the multicenter bond (10c-2e) of M$ _{2} $@Cu$ _{6} $. Cu$ _{2} $:(CuNH$ _{3} $)$ _{2} $@(CuSH)$ _{6} $, Ag$ _{2} $:(AgPH$ _{3} $)$ _{2} $@(CuSH)$ _{6} $, Zn$ _{2} $:(ZnCl)$ _{2} $@(CuSH)$ _{6} $), Cd$ _{2} $: (CdCl)$ _{2} $@(CuSH)$ _{6} $), Hg$ _{2} $:(CdCl)$ _{2} $@(CuSH)$ _{6} $). $ E $$ _{\rm{b}} $ gives the binding energy. For color image, see the online version

    Figure  4.  The variation trend of binding energies with the vertical distance between two units in (a) (ZnCl)$ _{2} $@(CuSH)$ _{6} $; and (b) X$ _{2} $@(CuSH)$ _{6} $ (X = F, Cl, Br, I). $ R $ is distance between the center of monomer and the center of the hexagonal ring. For color image, see the online version

    Figure  5.  ELF contour for (ML)$ _{2} $@(CuSH)$ _{6} $ complexes (M = Cu, Ag, and Au). The color scale for the values is given on the right of the figure. For color image, see the online version

    Figure  6.  Contours of deformation densities ($ \Delta $$ \pi $ = 0.001) indicate the flow of electrons, from red to blue, involved in the Cu$ _{6} $–monomer interactions. For color image, see the online version

    Figure  7.  The variation of binding energies with the different ligands in two systems: (a) (AgL)$ _{2} $@(CuSH)$ _{6} $ (L = PH$ _{3} $, NH$ _{3} $, CO), (b) (ZnX)$ _{2} $@(CuSH)$ _{6} $ (X = F, Cl, Br, I, SiH$ _{3} $) systems. Labeled are contours of deformation densities. For color image, see the online version

    S1.  AdNDP chemical bonding analysis for the (a) (CuNH3)2 monomer and (b) (CuL)2@(CuSH)6 (L=NH3) complex (TPSS-D3/def2-tzvp).ON gives the occupancy number.

    S2.  AdNDP chemical bonding analysis for the (a) (AgL)2 monomer and (b) (AgL)2@(CuSH)6 (L=PH3) complex.

    S3.  AdNDP chemical bonding analysis for the (a) (AgL)2 monomer and (b) (AgL)2@(CuSH)6 (L=PH3) complex.

    S4.  AdNDP chemical bonding analysis for the (ZnL)2@(CuSH)6 (L=CI) complex.

    S5.  AdNDP chemical bonding analysis for the (CdL)2@(CuSH)6 (L=CI) complex

    S6.  AdNDP chemical bonding analysis for the (HgL)2@(CuSH)6 (L=CI) complex.

    Table  Ⅰ.   Energy decomposition analysis results (in kJ/mol) between the hexagonal ring Cu6 and the monomer in the M2@Cu6 complexes (M=Cu, Ag, Au, Zn, Cd, Hg)a.

    下载: 导出CSV
  • [1] X. Kang, S. X. Wang, Y. B. Song, S. Jin, G. D. Sun, H. Z. Yu, and M. Z. Zhu, Angew. Chem. Int. Ed. 55 3611 (2016). doi: 10.1002/anie.201600241
    [2] A. N. Chernyshev, M. V. Chernysheva, P. Hirva, V. Y. Kukushkin, and M. Haukka, Dalton Trans. 44 14523 (2015). doi: 10.1039/C4DT03167A
    [3] Q. Liu, M. Xie, X. Y. Chang, S. Cao, C. Zou, W. F. Fu, C. M. Che, Y. Chen, and W. Lu, Angew. Chem. Int. Ed. 57 6279 (2018). doi: 10.1002/anie.201803965
    [4] M. Gil-Moles, M. C. Gimeno, J. M. López-de-Luzuriaga, M. Monge, M. E. Olmos, and D. Pascual, Inorg. Chem. 56 9281 (2017). doi: 10.1021/acs.inorgchem.7b01342
    [5] G. Chen, S. T. Wang, B. Feng, B. Jiang, and M. Miao, Food Chem. 277 632 (2019). doi: 10.1016/j.foodchem.2018.11.024
    [6] R. Echeverría, J. M. López-De-Luzuriaga, M. Monge, S. Moreno, and M. E. Olmos, Inorg. Chem. 55 10523 (2016). doi: 10.1021/acs.inorgchem.6b01749
    [7] P. Pyykkö, Angew. Chem. Int. Ed. 43 4412 (2004). doi: 10.1002/anie.200300624
    [8] P. Pyykkö, Chem. Soc. Rev. 37 1967 (2008). doi: 10.1039/b708613j
    [9] S. Sculfort and P. Braunstein, Chem. Soc. Rev. 40 2741 (2011). doi: 10.1039/c0cs00102c
    [10] P. K. Mehrotra and R. Hoffmann, Inorg. Chem. 17 2187 (1978). doi: 10.1021/ic50186a032
    [11] J. Muñiz, C. Wang, and P. Pyykkö, Chem. Eur. J. 17 368 (2011). doi: 10.1002/chem.201001765
    [12] D. Blasco, J. M. López-de-Luzuriaga, M. Monge, M. E. Olmos, D. Pascual, and M. Rodríguez-Castillo, Inorg. Chem. 57 3805 (2018). doi: 10.1021/acs.inorgchem.7b03131
    [13] Z. Assefa, F. DeStefano, M. A. Garepapaghi, J. H. LaCasce, S. Ouellete, M. R. Corson, J. K. Nagle, and H. H. Patterson, Inorg. Chem. 30 2868 (1991). doi: 10.1021/ic00014a010
    [14] M. B. Brands, J. Nitsch, and C. F. Guerra, Inorg. Chem. 57 2603 (2018). doi: 10.1021/acs.inorgchem.7b02994
    [15] H. Schmidbaur and A. Schier, Chem. Soc. Rev. 41 370 (2012). doi: 10.1039/C1CS15182G
    [16] P. Pyykkö, Chem. Rev. 97 597 (1997). doi: 10.1021/cr940396v
    [17] H. Y. Wang and L. J. Cheng, Nanoscale 9 13209 (2017). doi: 10.1039/C7NR03114A
    [18] A. Kalemos, J. Phys. Chem. A 122 8882 (2018).
    [19] X. W. Chi, Q. Y. Wu, Q. Hao, J. H. Lan, C. Z. Wang, Q. Zhang, Z. F. Chai, and W. Q. Shi, Organometallics 37 3678 (2018). doi: 10.1021/acs.organomet.8b00391
    [20] J. M. López-De-Luzuriaga, M. Monge, M. E. Olmos, and D. Pascual, Organometallics 34 3029 (2015). doi: 10.1021/acs.organomet.5b00334
    [21] Q. J. Zheng, C. Xu, X. Wu, and L. J. Cheng, ACS Omega 3 14423 (2018). doi: 10.1021/acsomega.8b01841
    [22] A. K. Friesen, N. V. Ulitin, S. L. Khursan, D. A. Shiyan, K. A. Tereshchenko, and S. V. Kolesov, Mendeleev Commun. 27 374 (2017). doi: 10.1016/j.mencom.2017.07.018
    [23] H. Cheng and L. J. Cheng, Comput. Theor. Chem. 1060 36 (2015). doi: 10.1016/j.comptc.2015.02.020
    [24] L. F. Li, C. Xu, and L. J. Cheng, Comput. Theor. Chem. 1021 144 (2013). doi: 10.1016/j.comptc.2013.07.001
    [25] Q. Y. Zhang and L. J. Cheng, J. Chem. Inf. Model. 55 1012 (2015). doi: 10.1021/acs.jcim.5b00069
    [26] H. Ari, Z. Büyükmumcu, and T. Özpozan, J. Mol. Struct. 1165 259 (2018). doi: 10.1016/j.molstruc.2018.03.115
    [27] S. A. Ivanov, I. Arachchige, and C. M. Aikens, J. Phys. Chem. A 115 8017 (2011). doi: 10.1021/jp200346c
    [28] D. E. Jiang, W. Chen, R. L. Whetten, and Z. F. Chen, J. Phys. Chem. C 113 16983 (2009). doi: 10.1021/jp906823d
    [29] A. Lechtken, C. Neiss, M. M. Kappes, and D. Schooss, Phys. Chem. Chem. Phys. 11 4344 (2009). doi: 10.1039/b821036e
    [30] Q. M. Liu and L. J. Cheng, J. Alloy Compd. 771 762 (2019). doi: 10.1016/j.jallcom.2018.08.033
    [31] D. W. Szczepanik and J. Mrozek, Comput. Theor. Chem. 1026 72 (2013). doi: 10.1016/j.comptc.2013.10.015
    [32] Y. J. Cui and L. J. Cheng, RSC Adv. 7 49526 (2017). doi: 10.1039/C7RA09023D
    [33] D. Y. Zubarev and A. I. Boldyrev, Phys. Chem. Chem. Phys. 10 5207 (2008). doi: 10.1039/b804083d
    [34] L. J. Yan, L. J. Cheng, and J. L. Yang, Chin. J. Chem. Phys. 28 476 (2015). doi: 10.1063/1674-0068/28/cjcp1505105
    [35] D. Y. Zubarev and A. I. Boldyrev, J. Org. Chem. 73 9251 (2008). doi: 10.1021/jo801407e
    [36] Y. F. Shen, C. Xu, and L. J. Cheng, RSC Adv. 7 36755 (2017). doi: 10.1039/C7RA06811E
    [37] A. P. Sergeeva and A. I. Boldyrev, Comment. Inorg. Chem. 31 2 (2010). doi: 10.1080/02603590903498639
    [38] D. Y. Zubarev, D. Domin, and W. A. Lester Jr., J. Phys. Chem. A 114 3074 (2010). doi: 10.1021/jp906914y
    [39] D. W. Szczepanik, Comput. Theor. Chem. 1100 13 (2017). doi: 10.1016/j.comptc.2016.12.003
    [40] D. Szczepanik and J. Mrozek, J. Math. Chem. 51 1388 (2013). doi: 10.1007/s10910-013-0153-8
    [41] D. W. Szczepanik and J. Mrozek, J. Chem. 2013 684134 (2013).
    [42] G. Frenking and S. Shaik, The Chemical Bond: Chemical Bonding Across the Periodic Table Weinheim: John Wiley & Sons, (2014).
    [43] E. J. Baerends, T. Ziegler, J. Autschbach, D. Bashford, A. Bérces, F. Bickelhaupt, C. Bo, P. Boerrigter, L. Cavallo, and D. Chong, Theoretical Chemistry Amsterdam: Vrije Universiteit ADF2014, (2014). http://www.scm.com.
    [44] B. Silvi, Struct. Chem. 28 1389 (2017). doi: 10.1007/s11224-017-0962-7
    [45] N. K. Nkungli and J. N. Ghogomu, J. Mol. Model. 23 200 (2017). doi: 10.1007/s00894-017-3370-4
    [46] S. Berski and P. Durlak, Polyhedron 129 22 (2017). doi: 10.1016/j.poly.2017.03.024
    [47] J. G. Du and G. Jiang, Eur. J. Inorg. Chem. 2016 1589 (2016). doi: 10.1002/ejic.201501412
    [48] A. D. Dergunov, E. A. Smirnova, A. Merched, S. Visvikis, G. Siest, V. V. Yakushkin, and V. Tsibulsky, Biochim. Biophys. Acta 1484 14 (2000). doi: 10.1016/S1388-1981(99)00196-1
    [49] Z. M. Tian and L. J. Cheng, J. Phys. Chem. C 121 20458 (2017). doi: 10.1021/acs.jpcc.7b05398
    [50] M. Huang, C. Xu, and L. J. Cheng, Acta Chim. Sin. 74 758 (2016). doi: 10.6023/A16050230
  • 加载中
图(13) / 表(1)
计量
  • 文章访问数:  90
  • HTML全文浏览量:  78
  • PDF下载量:  2
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-11-12
  • 录用日期:  2019-12-16
  • 发布日期:  2020-03-17

目录

    /

    返回文章
    返回