留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

处置库膨润土胶体吸附迁移性及核素共同迁移特性研究进展

陈永贵 蔡叶青 叶为民 崔玉军 陈宝

陈永贵, 蔡叶青, 叶为民, 崔玉军, 陈宝. 处置库膨润土胶体吸附迁移性及核素共同迁移特性研究进展[J]. 机械工程学报, 2021, 43(12): 2149-2158. doi: 10.11779/CJGE202112001
引用本文: 陈永贵, 蔡叶青, 叶为民, 崔玉军, 陈宝. 处置库膨润土胶体吸附迁移性及核素共同迁移特性研究进展[J]. 机械工程学报, 2021, 43(12): 2149-2158. doi: 10.11779/CJGE202112001
CHEN Yong-gui, CAI Ye-qing, YE Wei-min, CUI Yu-jun, CHEN Bao. Progresses in researches on adsorption and migration properties of bentonite colloids and their co-migration with nuclide in repository[J]. JOURNAL OF MECHANICAL ENGINEERING, 2021, 43(12): 2149-2158. doi: 10.11779/CJGE202112001
Citation: CHEN Yong-gui, CAI Ye-qing, YE Wei-min, CUI Yu-jun, CHEN Bao. Progresses in researches on adsorption and migration properties of bentonite colloids and their co-migration with nuclide in repository[J]. JOURNAL OF MECHANICAL ENGINEERING, 2021, 43(12): 2149-2158. doi: 10.11779/CJGE202112001

处置库膨润土胶体吸附迁移性及核素共同迁移特性研究进展

doi: 10.11779/CJGE202112001
基金项目: 

国家自然科学基金项目 41977232

国家自然科学基金项目 41772279

国家自然科学基金项目 42030714

详细信息
    作者简介:

    陈永贵(1976— ),男,安徽宿松人,教授,博士生导师,主要从事环境地质和非饱和土力学方面的研究。E-mail:cyg@tongji.edu.cn

  • 中图分类号: TU41

Progresses in researches on adsorption and migration properties of bentonite colloids and their co-migration with nuclide in repository

  • 摘要: 在阐述高放射性废物深地质处置库内膨润土胶体吸附迁移特性的基础上,总结了胶体与核素的共迁移试验、作用机理和模拟等方面研究成果。结果表明,膨润土胶体的吸附、迁移性受胶体浓度、地下水离子强度和pH影响显著,已有成果难以评价膨润土胶体对核素的吸附能力以及胶体的迁移能力。实验室动态柱试验和原位偶极子流场试验都关注到可移动胶体对核素迁移的促进作用以及过滤胶体对核素迁移的阻滞作用,但缺乏原位远距离胶体和核素共迁移试验成果。膨润土胶体和核素共迁移效果受胶体的吸附-解吸和胶体过滤作用控制,鲜少考虑介质的阻塞作用。双重渗透率模型和双重孔隙介质模型能够模拟特定条件下膨润土胶体和核素的共迁移穿透曲线,但考虑的裂隙系统简单,未考虑核素的竞争吸附效应。最后,提出了试验和理论方面的研究建议。

     

  • 图  膨润土胶体形成及核素迁移[9]

    Figure  1.  Colloid formation and radionuclide migration [9]

    图  不同因素影响下的胶体吸附性

    Figure  2.  Adsorption properties of bentonite colloids under different influences

    图  膨润土胶体的快速迁移特征[21]

    Figure  3.  Rapid migration characteristics of bentonite colloids [21]

    图  不同因素影响下的胶体迁移性[17, 25]

    Figure  4.  Migration properties of bentonite colloids under different influences [17, 25]

    图  柱试验装置示意图[17, 27-28]

    Figure  5.  Schematic diagram of column test devices [17, 27-28]

    图  动态柱胶体-核素共迁移试验结果

    Figure  6.  Results of dynamic column co-migration tests

    图  偶极子流场试验原理

    Figure  7.  Schematic diagram of dipole flow field tests

    图  原位偶极子流场共迁移试验结果[34]

    Figure  8.  Results of dipole flow field migration [34]

    图  胶体-核素共迁移作用机理[22, 35]

    Figure  9.  Mechanism of colloid and nuclide co-migration[22, 35]

    图  10  核素在膨润土胶体的吸附-解吸动力学[37]

    Figure  10.  Adsorption-desorption kinetics of bentonite colloids [37]

    图  11  双重渗透率模型模拟结果[27]

    Figure  11.  Simulated results of dual permeability model[27]

    图  12  双重孔隙介质模型模拟结果[48]

    Figure  12.  Simulated results of double-porosity model [48]

    表  1  离子强度和pH对共迁移影响

    Table  1.   Effect of ionic strength and pH on co-migration

    核素-胶体电解质(Ⅰ; pH)胶体状态穿/%效果文献
    Cs(Ⅰ)DW稳定、可移动0.08促进文献[29]
    Cs+BC 1.89
    Sr(Ⅱ)NaClO4 50 mM; 9.5稳定、可移动72促进文献[21]
    Sr+BC  100
    U(Ⅵ)NaCl 1 mM; 7稳定、可移动45促进文献[16]
    U+BC  68
    Cs(Ⅰ)碳酸盐微咸水170 mM; 7.6不稳定0.03~0.29促进文献[30]
    Cs+BC0.27~0.31
    Ce(Ⅲ)17~41阻滞
    Ce+BC0.8~1.4
    U(Ⅵ)39~67阻滞
    U+BC23~40
    Eu(Ⅲ)NaCl 1 mM; 6.5稳定、可移动34促进文献[17]
    Eu+BC  78
    Eu(Ⅲ)NaCl 10 mM; 6.5不稳定68阻滞
    Eu+BC  18
    Eu(Ⅲ)NaCl 1 mM; 3.5不稳定58阻滞
    Eu+BC  39
    下载: 导出CSV

    表  2  偶极子流场胶体-核素共迁移结果[34]

    Table  2.   Co-migration results in dipole flow field [34]

    试验内容胶体分数/%阻滞因子回收率/%
    1单独迁移I(Ⅰ)-13101100
    Sr(Ⅱ)-850387
    Am(Ⅲ)-2436~580.8830
    Pu(Ⅳ)-2425~580.8718
    Th(IV)-23220~300.86
    Np(Ⅴ)-2370~10197
    U(Ⅵ)-2380~12153
    2共迁移I(Ⅰ)-131+BC0192
    Sr(II)-85+BC02.588
    Am(Ⅲ)-241+BC990.955
    Pu(IV)-244+BC840.977
    Th(IV)-232 + BC940.955
    Np(Ⅴ)-237 + BC0~1178
    U(Ⅵ)-233 + BC6198
    Cs-137+BC80.81;12170
    下载: 导出CSV
  • [1] PAN D Q, FAN Q H, LI P, et al. Sorption of Th(IV) on Na-bentonite: Effects of pH, ionic strength, humic substances and temperature[J]. Chemical Engineering Journal, 2011, 172(2/3): 898-905.
    [2] VILLAR M V, IGLESIAS R J, GUTIÉRREZ-ÁLVAREZ C, et al. Hydraulic and mechanical properties of compacted bentonite after 18 years in barrier conditions[J]. Applied Clay Science, 2018, 160: 49-57.
    [3] CUI Y J. On the hydro-mechanical behaviour of MX80 bentonite-based materials[J]. Journal of Rock Mechanics and Geotechnical Engineering, 2017, 9(3): 565-574.
    [4] HE J G, LI Y, SU Y, et al. Influence of γ-irradiation and oxygen conditions on the diffusion of I-125 in crushed Beishan granite[J]. Applied Radiation and Isotopes, 2020, 163: 109224.
    [5] XU W T, ZHANG Y S, LI X Z, et al. Extraction and statistics of discontinuity orientation and trace length from typical fractured rock mass: a case study of the Xinchang underground research laboratory site, China[J]. Engineering Geology, 2020, 269: 105553.
    [6] 黄依艺, 陈宝. 高压实膨润土在处置库围岩裂缝中的侵入行为研究[J]. 岩石力学与工程学报, 2019, 38(12): 2561-2569.

    HUANG Yi-yi, CHEN Bao. Intrusion behaviors of highly compacted bentonite into host-rock fractures in a HLW disposal repository[J]. Chinese Journal of Rock Mechanics and Engineering, 2019, 38(12): 2561-2569. (in Chinese)
    [7] LIU R C, HUANG N, JIANG Y J, et al. A numerical study of shear-induced evolutions of geometric and hydraulic properties of self-affine rough-walled rock fractures[J]. International Journal of Rock Mechanics and Mining Sciences, 2020, 127: 104211.
    [8] MISSANA T, ALONSO Ú, TURRERO M J. Generation and stability of bentonite colloids at the bentonite/granite interface of a deep geological radioactive waste repository[J]. Journal of Contaminant Hydrology, 2003, 61(1/2/3/4): 17-31.
    [9] SVENSK KÄRNBRÄNSLEHANTERING AB. Äspö Hard Rock Laboratory Annual Report 2017[R]. SKB TR-18-10. Solna: Swedish Nuclear Fuel and Waste Management Co, 2019.
    [10] MÖRI A, ALEXANDER W R, GECKEIS H, et al. The colloid and radionuclide retardation experiment at the Grimsel Test Site: influence of bentonite colloids on radionuclide migration in a fractured rock[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2003, 217(1/2/3): 33-47.
    [11] NERETNIEKS I, MORENO L. Revisiting Bentonite Erosion Understanding and Modelling Based on the BELBaR Project Findings[R]. SKB TR-17-12. Solna: Swedish Nuclear Fuel and Waste Management Co, 2018.
    [12] NOSECK U, FLlÜGGg J, REIMUS P, et al. Colloid Formation and Migration Project: Modelling of Tracer, Colloid and Radionuclide/Homologue Transport for Dipole CFM 06.002-Pinkel surface packer[R]. Nagra Technical Report 16-06. Wettingen: National Cooperative for the Disposal of Radioactive Waste, 2016.
    [13] XU Z, PAN D Q, SUN Y L, et al. Stability of GMZ bentonite colloids: Aggregation kinetic and reversibility study[J]. Applied Clay Science, 2018, 161: 436-443.
    [14] XU Z, SUN Y L, NIU Z W, et al. Kinetic determination of sedimentation for GMZ bentonite colloids in aqueous solution: Effect of pH, temperature and electrolyte concentration[J]. Applied Clay Science, 2020, 184: 105393.
    [15] XIAN D F, ZHOU W Q, PAN D Q, et al. Stability analysis of GMZ bentonite colloids: aggregation mechanism transition and the edge effect in strongly alkaline conditions[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2020, 601: 125020.
    [16] ZHANG Z, GAO C, SUN Y F, et al. Co-transport of U(VI) and bentonite colloids: Influence of colloidal gibbsite[J]. Applied Clay Science, 2021, 205: 106033.
    [17] 徐真. 膨润土胶体与Eu(Ⅲ)的相互作用研究[D]. 兰州: 兰州大学, 2019.

    XU Zhen. Study on the Interaction between Bentonite Colloids and Eu(Ⅲ)[D]. Lanzhou: Lanzhou University, 2019. (in Chinese)
    [18] TRAN E L, TEUTSCH N, KLEIN-BENDAVID O, et al. Uranium and Cesium sorption to bentonite colloids under carbonate-rich environments: Implications for radionuclide transport[J]. Science of the Total Environment, 2018, 643: 260-269.
    [19] NORRFORS K K, MARSAC R, BOUBY M, et al. Montmorillonite colloids: II. Colloidal size dependency on radionuclide adsorption[J]. Applied Clay Science, 2016, 123: 292-303.
    [20] SUN Z, CHEN Y G, CUI Y J, et al. Removal of europium on GMZ bentonite corroded by young cement water at different temperatures[J]. Journal of Radioanalytical and Nuclear Chemistry, 2018, 318(2): 1297-1305.
    [21] ALBARRAN N, MISSANA T, GARCÍA-GUTIÉRREZ M, et al. Strontium migration in a crystalline medium: effects of the presence of bentonite colloids[J]. Journal of Contaminant Hydrology, 2011, 122(1/2/3/4): 76-85.
    [22] ZHANG W, TANG X Y, WEISBROD N, et al. A review of colloid transport in fractured rocks[J]. Journal of Mountain Science, 2012, 9(6): 770-787.
    [23] TRAN E, KLEIN BEN-DAVID O, TEUTCH N, et al. Influence of heteroaggregation processes between intrinsic colloids and carrier colloids on cerium(III) mobility through fractured carbonate rocks[J]. Water Research, 2016, 100: 88-97.
    [24] YANG J W, ZHANG Z, CHEN Z Y, et al. Co-transport of U(VI) and gibbsite colloid in saturated granite particle column: Role of pH, U(VI) concentration and humic acid[J]. Science of the Total Environment, 2019, 688: 450-461.
    [25] VILKS P, MILLER N H, VORAUER A. Laboratory bentonite colloid migration experiments to support the Äspö Colloid Project[J]. Physics and Chemistry of the Earth, Parts A/B/C, 2008, 33(14/15/16): 1035-1041.
    [26] MISSANA T, ALONSO Ú, GARCÍA-GUTIÉRREZ M, et al. Role of bentonite colloids on europium and plutonium migration in a granite fracture[J]. Applied Geochemistry, 2008, 23(6): 1484-1497.
    [27] KUROSAWA S, IBARAKI M, YUI M, et al. Experimental and numerical studies on colloid-enhanced radionuclide transport-the effect of kinetic radionuclide sorption onto colloidal particles[J]. MRS Online Proceedings Library, 2004, 824(1): 456-461.
    [28] ELO O, HÖLTTÄ P, KEKÄLÄINEN P, et al. Neptunium(V) transport in granitic rock: a laboratory scale study on the influence of bentonite colloids[J]. Applied Geochemistry, 2019, 103: 31-39.
    [29] KOLOMÁ K, ČERVINKA R, HANUSOVÁ I. 137Cs transport in crushed granitic rock: The effect of bentonite colloids[J]. Applied Geochemistry, 2018, 96: 55-61.
    [30] TRAN E L, TEUTSCH N, KLEIN-BENDAVID O, et al. Radionuclide transport in brackish water through chalk fractures[J]. Water Research, 2019, 163: 114886.
    [31] KUROSAWA S, JAMES S C, YUI M, et al. Model analysis of the colloid and radionuclide retardation experiment at the grimsel test site[J]. Journal of Colloid and Interface Science, 2006, 298(1): 467-475.
    [32] SCHÄFER T, GECKEIS H, BOUBY M, et al. U, Th, Eu and colloid mobility in a granite fracture under near-natural flow conditions[J]. Radiochimica Acta, 2004, 92(9/10/11): 731-737.
    [33] VILKS P, BAIK M H. Laboratory migration experiments with radionuclides and natural colloids in a granite fracture[J]. Journal of Contaminant Hydrology, 2001, 47(2/3/4): 197-210.
    [34] GECKEIS H, SCHÄFER T, HAUSER W, et al. Results of the colloid and radionuclide retention experiment (CRR) at the Grimsel Test Site (GTS), Switzerland - impact of reaction kinetics and speciation on radionuclide migration[J]. Radiochimica Acta, 2004, 92(9/10/11): 765-774.
    [35] KANTI SEN T, KHILAR K C. Review on subsurface colloids and colloid-associated contaminant transport in saturated porous media[J]. Advances in Colloid and Interface Science, 2006, 119(2/3): 71-96.
    [36] DITTRICH T M, BOUKHALFA H, WARE S D, et al. Laboratory investigation of the role of desorption kinetics on americium transport associated with bentonite colloids[J]. Journal of Environmental Radioactivity, 2015, 148: 170-182.
    [37] MISSANA T, GARCı́A-GUTIÉRREZ M, ALONSO Ú. Kinetics and irreversibility of cesium and uranium sorption onto bentonite colloids in a deep granitic environment[J]. Applied Clay Science, 2004, 26(1/2/3/4): 137-150.
    [38] HUBER F, KUNZE P, GECKEIS H, et al. Sorption reversibility kinetics in the ternary system radionuclide- bentonite colloids/nanoparticles-granite fracture filling material[J]. Applied Geochemistry, 2011, 26(12): 2226-2237.
    [39] TELFEYAN K, REIMUS P W, BOUKHALFA H, et al. Aging effects on Cesium-137 (137Cs) sorption and transport in association with clay colloids[J]. Journal of Colloid and Interface Science, 2020, 566: 316-326.
    [40] TANG X Y, WEISBROD N. Dissolved and colloidal transport of cesium in natural discrete fractures[J]. Journal of Environmental Quality, 2010, 39(3): 1066-1076.
    [41] YE X Y, CUI R J, DU X Q, et al. Mechanism of suspended kaolinite particle clogging in porous media during managed aquifer recharge[J]. Groundwater, 2019, 57(5): 764-771.
    [42] GE M T, WANG D J, YANG J W, et al. Co-transport of U(VI) and akaganéite colloids in water-saturated porous media: Role of U(VI) concentration, pH and ionic strength[J]. Water Research, 2018, 147: 350-361.
    [43] GHIASI B, NIKSOKHAN M H, MAHDAVI MAZDEH A. Co-transport of chromium(VI) and bentonite colloidal particles in water-saturated porous media: Effect of colloid concentration, sand gradation, and flow velocity[J]. Journal of Contaminant Hydrology, 2020, 234: 103682.
    [44] LI X F, ZHANG W J, QIN Y Q, et al. Fe-colloid cotransport through saturated porous media under different hydrochemical and hydrodynamic conditions[J]. Science of the Total Environment, 2019, 647: 494-506.
    [45] ZVIKELSKY O, WEISBROD N. Impact of particle size on colloid transport in discrete fractures[J]. Water Resources Research, 2006, 42(12): 1-12.
    [46] IBARAKI M, SUDICKY E A. Colloid-facilitated contaminant transport in discretely fractured porous media: 1. Numerical formulation and sensitivity analysis[J]. Water Resources Research, 1995, 31(12): 2945-2960.
    [47] BAEK I, PITT W W Jr. Colloid-facilitated radionuclide transport in fractured porous rock[J]. Waste Management, 1996, 16(4): 313-325.
    [48] REICHE T, NOSECK U, SCHÄFER T. Migration of contaminants in fractured-porous media in the presence of colloids: effects of kinetic interactions[J]. Transport in Porous Media, 2016, 111(1): 143-170.
  • 加载中
图(12) / 表(2)
计量
  • 文章访问数:  80
  • HTML全文浏览量:  75
  • PDF下载量:  0
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-03-23
  • 网络出版日期:  2022-12-02
  • 刊出日期:  2021-12-01

目录

    /

    返回文章
    返回