留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于无机卤化物钙钛矿湿度传感器的呼吸率监测系统

邬映杰 伍志林 王玲 辇伟奇 何邕 郭永彩

邬映杰, 伍志林, 王玲, 辇伟奇, 何邕, 郭永彩. 基于无机卤化物钙钛矿湿度传感器的呼吸率监测系统[J]. 机械工程学报, 2021, 48(3): 200100. doi: 10.12086/oee.2021.200100
引用本文: 邬映杰, 伍志林, 王玲, 辇伟奇, 何邕, 郭永彩. 基于无机卤化物钙钛矿湿度传感器的呼吸率监测系统[J]. 机械工程学报, 2021, 48(3): 200100. doi: 10.12086/oee.2021.200100
Wu Yingjie, Wu Zhilin, Wang Lin, Nian Weiqi, He Yong, Guo Yongcai. Respiratory rate monitoring system based on inorganic halide perovskite humidity sensor[J]. JOURNAL OF MECHANICAL ENGINEERING, 2021, 48(3): 200100. doi: 10.12086/oee.2021.200100
Citation: Wu Yingjie, Wu Zhilin, Wang Lin, Nian Weiqi, He Yong, Guo Yongcai. Respiratory rate monitoring system based on inorganic halide perovskite humidity sensor[J]. JOURNAL OF MECHANICAL ENGINEERING, 2021, 48(3): 200100. doi: 10.12086/oee.2021.200100

基于无机卤化物钙钛矿湿度传感器的呼吸率监测系统

doi: 10.12086/oee.2021.200100
基金项目: 

国家重点研发计划重大仪器专项 2016YFF0102802

重庆市重点仪器专项 cstc2017zdcy-zdzxX0009

重庆市科研机构绩效激励引导专项基金资助项目 cstc2019jxjl130029

重庆市自然科学基金资助项目 cstc2018jcyjA3233

重庆市自然科学基金资助项目 cstc2019jcyj-msxmX0623

中央高校基本科研业务费 2018CDQYGD0008

中央高校基本科研业务费 2018CDXYGD0017

中央高校基本科研业务费 2019CDQYGD004

重庆市研究生科研创新项目 CYS19011

详细信息
    作者简介:

    邬映杰(1996-),男,硕士研究生,主要从事钙钛矿湿度传感器及其应用的研究。E-mail: wuyingjie@cqu.edu.cn

    通讯作者:

    郭永彩(1963-),女,博士,教授,主要从事光电传感及精密测量仪器的研究。E-mail: ycguo@cqu.edu.cn

  • 中图分类号: TH837

Respiratory rate monitoring system based on inorganic halide perovskite humidity sensor

Funds: 

National Key R & D Plan for Major Instruments 2016YFF0102802

Chongqing Key Instrument Project cstc2017zdcy-zdzxX0009

Funded by Special Fund for Performance Incentive Guidance of Scientific Research Institutions in Chongqing cstc2019jxjl130029

Chongqing Natural Science Foundation cstc2018jcyjA3233

Chongqing Natural Science Foundation cstc2019jcyj-msxmX0623

Fundamental Scientific Research Business of Central Universities 2018CDQYGD0008

Fundamental Scientific Research Business of Central Universities 2018CDXYGD0017

Fundamental Scientific Research Business of Central Universities 2019CDQYGD004

Chongqing Graduate Research and Innovation Project CYS19011

More Information
  • 摘要: 呼吸率检测中存在主观因素强、信号提取复杂、设备不易获取和有线连接不方便测试者移动等问题。人体呼吸周期为3 s~6 s,呼吸气流是呼吸动作的最直接反应,与周围空气存在湿度差。本文采用研制的新型无机卤化物钙钛矿湿度传感器测量呼吸率,克服了市面上湿度传感器响应和恢复时间长(10 s以上)的问题。系统使用Zigbee无线通信传输检测信号,使信号检测和处理部分分离,方便测试者移动。使用上位机软件进行数据处理计算呼吸率,并根据呼吸暂停阈值判断呼吸状态。测试结果表明,系统可实时准确监测呼吸率,最大误差1次/分钟,具有准确率高、信号处理简单、便携和成本低的优势。

     

  • 图  呼吸监测系统总体框图

    Figure  1.  Block diagram of respiratory monitoring system

    图  无机卤化物钙钛矿湿敏材料合成

    Figure  2.  Synthesis of inorganic halide perovskite - sensitive materials

    图  电阻式湿度传感器制作流程图

    Figure  3.  Resistance type humidity sensor making flow chart

    图  硬件电路框图

    Figure  4.  Hardware circuit diagram

    图  传感器信号转换电路

    Figure  5.  Sensor signal conversion circuit

    图  电源管理电路

    Figure  6.  Sensor signal conversion circuit

    图  串口转USB电路

    Figure  7.  Serial port to USB circuit

    图  数据采集、无线传输节点程序流程图

    Figure  8.  Data acquisition, wireless transmission node program

    图  接收节点程序流程图

    Figure  9.  Receive node program flowchart

    图  10  上位机软件界面

    Figure  10.  Upper computer software interface

    图  11  上位机程序流程图

    Figure  11.  Upper computer program flow chart

    图  12  传感器性能测试。(a) 重复性;(b) 梯度湿度;(c) 响应时间;(d) 恢复时间

    Figure  12.  Sensor performance test. (a) Repetitive; (b) Gradient humidity; (c) Response time; (d) Recovery time

    图  13  呼吸率监测系统实物。

    1-湿度传感器;2-发送节点;3-接收节点

    Figure  13.  Respiratory rate monitoring system.

    1-humidity sensor; 2-send node; 3-receive node

    图  14  呼吸率监测显示与判断

    Figure  14.  Respiratory monitoring display and judgment

    表  1  呼吸率测试

    Table  1.   Respiratory rate testing

    编号呼吸率(次/分钟)
    慢速正常快速
    实际测试实际测试实际测试
    测试者17617172828
    测试者28815142425
    测试者3111118182626
    测试者49916152524
    测试者58716162424
    下载: 导出CSV
  • [1] Cretikos M A, Bellomo R, Hillman K, et al. Respiratory rate: the neglected vital sign[J]. Med J Aust, 2008, 188(11): 657-659. doi: 10.5694/j.1326-5377.2008.tb01825.x
    [2] Allen J. Photoplethysmography and its application in clinical physiological measurement[J]. Physiol Meas, 2007, 28(3): R1-R39. doi: 10.1088/0967-3334/28/3/R01
    [3] Hogan J. Why don't nurses monitor the respiratory rates of patients?[J]. Br J Nurs, 2006, 15(9): 489-492. doi: 10.12968/bjon.2006.15.9.21087
    [4] 陈星池, 赵海, 毕远国, 等. 手机可见光提取脉搏中呼吸率的估计[J]. 东北大学学报(自然科学版), 2017, 38(7): 932-935. https://www.cnki.com.cn/Article/CJFDTOTAL-DBDX201707005.htm

    Chen X C, Zhao H, Bi Y G, et al. Respiratory rate estimation from smartphone-camera-acquired pulse wave signal using visible light[J]. J Northeast Univ (Nat Sci), 2017, 38(7): 932-935. https://www.cnki.com.cn/Article/CJFDTOTAL-DBDX201707005.htm
    [5] Pimentel M A F, Johnson A E W, Charlton P H, et al. Toward a robust estimation of respiratory rate from pulse oximeters[J]. IEEE Trans Biomed Eng, 2017, 64(8): 1914-1923. doi: 10.1109/TBME.2016.2613124
    [6] 陈星池, 赵海, 李晗, 等. 近红外可穿戴设备中脉搏波的呼吸率检测[J]. 光学 精密工程, 2016, 24(6): 1297-1306. https://www.cnki.com.cn/Article/CJFDTOTAL-GXJM201606009.htm

    Chen X C, Zhao H, Li H, et al. Detection of respiratory rate using pulse wave on near infrared wearable devices[J]. Opt Precision Eng, 2016, 24(6): 1297-1306. https://www.cnki.com.cn/Article/CJFDTOTAL-GXJM201606009.htm
    [7] Charlton P H, Birrenkott D A, Bonnici T, et al. Breathing rate estimation from the electrocardiogram and photoplethysmogram: a review[J]. IEEE Rev Biomed Eng, 2018, 11: 2-20. doi: 10.1109/RBME.2017.2763681
    [8] 储泰山, 陆美珠, 马志新. 基于床垫式生命监测仪的呼吸率检测[J]. 科技创新与应用, 2014(18): 5-6. https://www.cnki.com.cn/Article/CJFDTOTAL-CXYY201418005.htm

    Chu T S, Lu M Z, Ma Z X. Respiratory rate measurement based on mattress life monitor[J]. Technol Innov Appl, 2014(18): 5-6. https://www.cnki.com.cn/Article/CJFDTOTAL-CXYY201418005.htm
    [9] Turnbull H, Kasereka M C, Amirav I, et al. Development of a novel device for objective respiratory rate measurement in low-resource settings[J]. BMJ Innovat, 2018, 4(4): 185. doi: 10.1136/bmjinnov-2017-000267
    [10] Lee P J. Clinical evaluation of a novel respiratory rate monitor[J]. J Clin Monit Comp, 2016, 30(2): 175-183. doi: 10.1007/s10877-015-9697-4
    [11] 范大勇. 便携式呼吸监测系统设计方案的改进和算法研究[D]. 天津: 天津大学, 2018.

    Fan D Y. Improved design and algorithm research of portable respiratory detection system[D]. Tianjin: Tianjin University, 2018.
    [12] Zhen Z, Li Z C, Zhao X L, et al. Formation of uniform water microdroplets on wrinkled graphene for ultrafast humidity sensing[J]. Small, 2018, 14(15): 1703848. doi: 10.1002/smll.201703848
    [13] Smith A D, Elgammal K, Niklaus F, et al. Resistive graphene humidity sensors with rapid and direct electrical readout[J]. Nanoscale, 2015, 7(45): 19099-19109. doi: 10.1039/C5NR06038A
    [14] Atalay O, Kennon W R, Demirok E. Weft-knitted strain sensor for monitoring respiratory rate and its electro-mechanical modeling[J]. IEEE Sens J, 2015, 15(1): 110-122. doi: 10.1109/JSEN.2014.2339739
    [15] Zheng Y L, Ding X R, Poon C C Y, et al. Unobtrusive sensing and wearable devices for health informatics[J]. IEEE Trans Biomed Eng, 2014, 61(5): 1538-1554. doi: 10.1109/TBME.2014.2309951
    [16] Mogera U, Sagade A A, George S J, et al. Ultrafast response humidity sensor using supramolecular nanofibre and its application in monitoring breath humidity and flow[J]. Sci Rep, 2014, 4: 4103. http://www.nature.com/articles/srep04103
    [17] Borini S, White R, Wei D, et al. Ultrafast graphene oxide humidity sensors[J]. ACS Nano, 2013, 7(12): 11166-11173. doi: 10.1021/nn404889b
    [18] Adib F, Mao H Z, Kabelac Z E, et al. Smart homes that monitor breathing and heart rate[C]//Proceedings of the 33rd Annual ACM Conference on Human Factors in Computing Systems, South Korea, 2015: 837-846.
    [19] Iber C, Ancoli-Israel S, Chesson A L, et al. The AASM Manual for the Scoring of Sleep and Associated Events: Rules, Terminology and Technical Specifications[M]. 2nd ed. Westchester, Ill, USA: American Academy of Sleep Medicine, 2012.
    [20] Anichini C, Aliprandi A, Gali S M, et al. Ultrafast and highly sensitive chemically functionalized graphene oxide-based humidity sensors: harnessing device performances via the supramolecular approach[J]. ACS Appl Mater Interfaces, 2020, 12(39): 44017-44025. doi: 10.1021/acsami.0c11236
  • 加载中
图(14) / 表(1)
计量
  • 文章访问数:  529
  • HTML全文浏览量:  234
  • PDF下载量:  31
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-03-23
  • 修回日期:  2020-11-06

目录

    /

    返回文章
    返回