留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

滇中盆地南缘富锂黏土岩地球化学特征及沉积环境初探

贾永斌 于文修 温汉捷 罗重光 杨光树 杨洋 崔燚

贾永斌, 于文修, 温汉捷, 罗重光, 杨光树, 杨洋, 崔燚. 滇中盆地南缘富锂黏土岩地球化学特征及沉积环境初探[J]. 机械工程学报. doi: 10.14027/j.issn.1000-0550.2021.076
引用本文: 贾永斌, 于文修, 温汉捷, 罗重光, 杨光树, 杨洋, 崔燚. 滇中盆地南缘富锂黏土岩地球化学特征及沉积环境初探[J]. 机械工程学报. doi: 10.14027/j.issn.1000-0550.2021.076
JIA YongBin, YU WenXiu, WEN HanJie, LUO ChongGuang, YANG GuangShu, YANG Yang, CUI Yi. Geochemical Characteristics and Sedimentary Environment of Li-rich Clay Rocks at the Southern Margin of the Central Yunnan Basin[J]. JOURNAL OF MECHANICAL ENGINEERING. doi: 10.14027/j.issn.1000-0550.2021.076
Citation: JIA YongBin, YU WenXiu, WEN HanJie, LUO ChongGuang, YANG GuangShu, YANG Yang, CUI Yi. Geochemical Characteristics and Sedimentary Environment of Li-rich Clay Rocks at the Southern Margin of the Central Yunnan Basin[J]. JOURNAL OF MECHANICAL ENGINEERING. doi: 10.14027/j.issn.1000-0550.2021.076

滇中盆地南缘富锂黏土岩地球化学特征及沉积环境初探

doi: 10.14027/j.issn.1000-0550.2021.076
基金项目: 

国家重点研发计划 2017YFC0602500

详细信息
    作者简介:

    贾永斌,男,1991年出生,硕士研究生,地球化学,E-mail: jiayongbin@mail.gyig.ac.cn

    通讯作者:

    于文修,男,讲师,矿床地球化学,E-mail: 284953733@qq.com

  • 中图分类号: P588.2

Geochemical Characteristics and Sedimentary Environment of Li-rich Clay Rocks at the Southern Margin of the Central Yunnan Basin

Funds: 

National Key Research and Development Project of China 2017YFC0602500

  • 摘要: 沉积岩中的微量元素对沉积环境变化有较高的敏感度,是研究古沉积环境的有效手段。滇中盆地倒石头组是一套富锂的黏土岩地层,其古环境的研究对恢复该时期盆地沉积格局和锂元素富集具有重要意义。基于滇中盆地倒石头组两个典型钻孔样品详细的地球化学研究,探讨了倒石头组富锂黏土岩形成时的沉积环境及其对锂元素富集的影响。研究结果表明:所有样品Sr、Ga元素含量及Sr/Ba值指示研究区古水体介质为淡水陆相沉积环境;其δU值介于0.51~1.63,U/Th值介于0.11~1.49,V/(V+Ni)值介于0.48~0.86,V/Cr值介于0.45~1.24,同时在U(EF)-Mo(EF)协变模式图中,样品数据均未落在缺氧和硫化区域,表明研究区富锂黏土岩的沉积环境为氧化—弱还原环境;且样品Sr/Cu比值介于0.69~4.87,CIA值介于86.3~99.66,XRD全岩黏土矿物分析显示高岭石为主要的黏土矿物,表明富锂黏土岩在形成过程中处于温暖潮湿的沉积环境并伴随较为强烈的化学风化作用。

     

  • 图  滇中盆地南缘地质简图(底图据云南省地质局第二区域地质测量大队七分队,1969 1 )和ZK05、ZK06钻孔剖面图

    Figure  1.  Geological sketch of southern margin of Central Yunnan (modified by Yunnan Geological Brigade,1969) and profiles of boreholes ZK05, ZK06

    Fig.1

    图  样品Li含量与Sr含量、Ga含量、Sr/Ba值的关系图解

    Figure  2.  Sample content of Li, Sr and Ga, and Sr/Ba relationship

    Fig.2

    图  滇中盆地南缘倒石头组黏土岩U和Mo富集系数(U(EF)⁃Mo(EF))协变模式图[43]

    Figure  3.  Crossplot of U(EF)⁃Mo(EF) in Daoshitou Formation clay rock at southern margin of Dianzhong Basin[43]

    Fig.3

    图  样品Li含量与U/Th值、V/Cr值、V/(V+Ni)值、δU的关系图解

    Figure  4.  Sample Li content, U/Th value, V/Cr value, V/(V+Ni)value, δU relationship diagram

    Fig.4

    图  样品Li含量与U/Th值、CIA值、Sr/Cu的关系图解

    Figure  5.  Sample content of Li, U/Th, CIA, and Sr/Cu relationship diagram

    Fig.5

    图  滇中盆地南缘倒石头组样品Th/Sc⁃Zr/Sc图解[54]

    Figure  6.  Th/Sc⁃Zr/Sc for samples from the Daoshitou Formation section, southern Dianzhong Basin[54]

    Fig.6

    图  样品的X射线衍射峰图谱

    M.白云母;K.高岭石;B.勃姆石;Mo.蒙脱石;D.白云石;Py.黄铁矿;A.锐钛矿

    Figure  7.  XRD diffraction peak patterns for samples

    Fig.7

    表  1  滇中盆地南缘倒石头组黏土岩微量元素(μg/g)分析及比值计算结果

    样号 岩性 Li Mo Sc Co Zr U Th V Cr Ni Sr Ga Ba Cu Sr/Cu Sr/Ba δU U/Th V/Cr V/(V+Ni)
    ZK05-H2 炭质泥岩 2 280 7.78 36.7 6.4 257 14.8 25.8 169 160 56.8 14 35.7 350 9.6 1.46 0.04 1.26 0.57 1.06 0.75
    ZK05-H3 炭质泥岩 1 700 12.2 35.3 11.4 213 10.9 24.7 195 166 69.7 18.7 36.2 380 17.5 1.07 0.05 1.14 0.44 1.17 0.74
    ZK05-H4 深灰色煤岩 3 220 15.45 26.6 6.7 332 5.4 40.9 169 352 28.3 35.4 32.3 280 11.2 3.16 0.13 0.57 0.13 0.48 0.86
    ZK05-H5 浅灰色铝土质黏土岩 3 130 12.8 25.5 9.2 350 4.9 23.7 268 390 89.6 36.1 52.3 270 14.7 2.46 0.13 0.77 0.21 0.69 0.75
    ZK05-H6 浅灰白色铝土质黏土岩 1 600 6.6 30.8 11.9 323 4.5 27 223 305 79.8 23.1 49.3 300 13.4 1.72 0.08 0.67 0.17 0.73 0.74
    ZK05-H7 浅灰白色铝土质黏土岩 830 5 32.1 24.8 320 4.8 28.9 229 267 87.8 16.4 52.4 610 8 2.05 0.03 0.67 0.17 0.86 0.72
    ZK05-H8 浅灰白色铝土质黏土岩 1 100 4.84 30.4 12.7 311 4.6 24.4 225 246 72.1 15.8 51.3 420 17.8 0.89 0.04 0.72 0.19 0.91 0.76
    ZK05-H9 浅灰白色铝土质黏土岩 330 1.57 31.2 24.9 291 4.1 25.5 195 184 63.7 12.4 48.8 870 18.1 0.69 0.01 0.65 0.16 1.06 0.75
    ZK06-H2 浅灰色铝土质黏土岩 364 4.94 24.2 5 279 4.5 31.8 164 316 29.7 3.9 43.5 80 1.7 2.29 0.05 0.60 0.14 0.52 0.85
    ZK06-H3 深灰色薄—中层状炭质铝土黏土岩 373 16.2 23 19.1 216 5 23.1 153 260 97.2 8 35.9 80 5.9 1.36 0.10 0.79 0.22 0.59 0.61
    ZK06-H4 深灰色薄—中层状炭质铝土黏土岩 1 070 5.96 28.7 10.4 313 4.7 20.5 143 298 109 6.2 39.9 30 3.1 2.00 0.21 0.82 0.23 0.48 0.57
    ZK06-H5 深灰色铝土质黏土岩 970 5.89 25.6 12.1 261 3.6 11.4 151 244 108.5 6 35.8 30 2.1 2.86 0.20 0.97 0.32 0.62 0.58
    ZK06-H6 灰—深灰色夹黑色夹杂少量黄铁矿铝土质黏土岩 1 360 6.76 29 8.2 279 4.7 14 131 253 127.5 5.3 37.4 20 2.8 1.89 0.27 1.00 0.34 0.52 0.51
    ZK06-H7 灰—深灰色夹黑色夹杂少量黄铁矿铝土质黏土岩 1 290 6.56 31.5 9.8 334 4.7 13.9 132 256 130 5.6 38.3 20 2 2.80 0.28 1.01 0.34 0.52 0.50
    ZK06-H8 灰—深灰色夹黑色夹杂少量黄铁矿铝土质黏土岩 1 300 7.17 31 10.5 320 4.7 11.25 134 243 131.5 5.6 38.4 30 2.6 2.15 0.19 1.11 0.42 0.55 0.50
    ZK06-H9 灰—深灰色夹黑色夹杂少量黄铁矿铝土质黏土岩 1 290 9.21 28.2 9 300 4.6 10.5 121 266 129 4.9 38.2 30 2.8 1.75 0.16 1.14 0.44 0.45 0.48
    ZK06-H10 浅灰色薄片状铝土质黏土岩 1 270 11.2 33 11.2 298 5.3 17.65 135 283 141 6.3 42.3 30 3.3 1.91 0.21 0.95 0.30 0.48 0.49
    ZK06-H11 浅灰色薄片状铝土质黏土岩 1 410 9.45 29.4 10 299 4.8 12.4 142 296 135.5 5.6 39.6 30 3.7 1.51 0.19 1.07 0.39 0.48 0.51
    ZK06-H12 浅灰色薄片状铝土质黏土岩 1 340 10.8 29.4 11.1 295 4.9 13.75 138 286 138.5 6.3 39.8 30 3.2 1.97 0.21 1.03 0.36 0.48 0.50
    ZK06-H13 浅灰色薄片状铝土质黏土岩 970 5.24 21.6 12.8 283 3.9 14.1 167 247 107.5 5 37.1 40 2.2 2.27 0.13 0.91 0.28 0.68 0.61
    ZK06-H14 浅灰色薄片状铝土质黏土岩 950 7.59 22 14.4 270 3.8 10.25 160 260 116.5 5.1 37.1 30 3.1 1.65 0.17 1.05 0.37 0.62 0.58
    ZK06-H15 浅灰色薄片状铝土质黏土岩 730 4.01 26.3 10.7 262 4.7 28.1 163 228 92.1 6.8 38.8 50 1.6 4.25 0.14 0.67 0.17 0.71 0.64
    ZK06-H16 深灰色中—厚层状铝土岩 570 5.72 23 13.1 220 5.9 23.7 146 195 75.9 11.4 34 50 5.1 2.24 0.23 0.86 0.25 0.75 0.66
    ZK06-H17 深灰色中—厚层状铝土岩 1 220 12.45 28.5 13.4 313 5 13.65 141 280 128.5 6.5 41.6 30 3.1 2.10 0.22 1.05 0.37 0.50 0.52
    ZK06-H18 深灰色中—厚层状铝土岩 449 3.7 22.9 12.9 211 4.6 21.7 198 175 59.2 11.6 40.1 160 3 3.87 0.07 0.78 0.21 1.13 0.77
    ZK06-H19 深灰色中—厚层状铝土岩 750 7.73 21.2 15.5 246 4.4 12.85 165 235 88.8 6.8 35.6 60 4.1 1.66 0.11 1.01 0.34 0.70 0.65
    ZK06-H20 深灰色层状铝土岩 1 260 5.05 26.7 9.1 262 4.4 9.04 133 239 117.5 4.8 38.6 10 2 2.40 0.48 1.19 0.49 0.56 0.53
    下载: 导出CSV

    表  2  滇中盆地南缘倒石头组黏土岩常量元素(%)分析及比值计算结果

    样号 岩性 Al2O3 Na2O CaO K2O CIA
    ZK05-H2 炭质泥岩 29.57 0.51 0.22 1.99 91.57
    ZK05-H3 炭质泥岩 26.36 0.39 0.28 1.60 92.06
    ZK05-H4 深灰色煤岩 26.64 0.08 0.08 1.13 95.37
    ZK05-H5 浅灰色铝土质黏土岩 33.82 0.05 0.05 0.37 98.60
    ZK05-H6 浅灰白色铝土质黏土岩 32.50 0.09 0.09 1.31 95.58
    ZK05-H7 浅灰白色铝土质黏土岩 31.56 0.12 0.12 2.72 91.41
    ZK05-H8 浅灰白色铝土质黏土岩 31.93 0.13 0.13 2.47 92.10
    ZK05-H9 浅灰白色铝土质黏土岩 29.67 0.18 0.18 4.36 86.30
    ZK06-H2 浅灰色铝土质黏土岩 31.18 0.09 0.51 0.03 97.59
    ZK06-H3 深灰色薄—中层状炭质铝土黏土岩 25.70 0.23 1.14 0.10 96.26
    ZK06-H4 深灰色薄—中层状炭质铝土黏土岩 37.32 0.09 1.70 0.05 98.97
    ZK06-H5 深灰色铝土质黏土岩 28.44 0.03 2.51 0.03 99.56
    ZK06-H6 灰—深灰色夹黑色夹杂少量黄铁矿铝土质黏土岩 35.15 0.03 1.65 0.02 99.61
    ZK06-H7 灰—深灰色夹黑色夹杂少量黄铁矿铝土质黏土岩 41.00 0.03 2.23 0.03 99.58
    ZK06-H8 灰—深灰色夹黑色夹杂少量黄铁矿铝土质黏土岩 41.57 0.04 2.58 0.03 99.55
    ZK06-H9 灰—深灰色夹黑色夹杂少量黄铁矿铝土质黏土岩 39.68 0.04 1.81 0.03 99.53
    ZK06-H10 浅灰色薄片状铝土质黏土岩 34.77 0.04 1.70 0.02 99.50
    ZK06-H11 浅灰色薄片状铝土质黏土岩 36.85 0.04 1.88 0.03 99.52
    ZK06-H12 浅灰色薄片状铝土质黏土岩 36.94 0.04 2.12 0.05 99.49
    ZK06-H13 浅灰色薄片状铝土质黏土岩 33.26 0.04 6.58 0.05 99.47
    ZK06-H14 浅灰色薄片状铝土质黏土岩 29.57 0.03 4.79 0.03 99.66
    ZK06-H15 浅灰色薄片状铝土质黏土岩 30.99 0.04 8.21 0.05 99.28
    ZK06-H16 深灰色中—厚层状铝土岩 23.90 0.03 13.02 0.03 99.03
    ZK06-H17 深灰色中—厚层状铝土岩 39.11 0.04 2.51 0.05 99.46
    ZK06-H18 深灰色中—厚层状铝土岩 24.28 0.08 10.51 0.10 95.31
    ZK06-H19 深灰色中—厚层状铝土岩 29.38 0.04 6.44 0.05 98.68
    ZK06-H20 深灰色层状铝土岩 29.76 0.03 1.70 0.03 99.66
    下载: 导出CSV
  • [1] 任方涛,张杰.黔中地区铝质岩中锂的化学分离富集研究[J].无机盐工业,2013,45(3):19-21.

    Ren Fangtao, Zhang Jie. Chemical separation and enrichment of lithium in aluminous rock in central Guizhou[J]. Inorganic Chemicals Industry, 2013,45(3):19-21.
    [2] 王珍珍,张福良,胡永达,等.世界锂资源开发利用形势分析与探讨[J].中国矿业,2014,23(增刊1):1-5.

    Wang Zhenzhen, Zhang Fuliang, Hu Yongda, et al .The global status of lithium resource and suggestions on its development and utilization in China[J]. China Mining Magazine. 2014,23(Suppl. 1):1-5.
    [3] 王学评,柴新夏,崔文娟.全球锂资源开发利用的现状与思考[J].中国矿业,2014,23(6):10-13.

    Wang Xueping, Chai Xinxia, Cui Wenjuan. Exploitation and utilization of global lithium resources:Trends and our responses[J], China Mining Magazine. 2014,23(6):10-13.
    [4] 吴荣庆.新能源材料锂:资源储量与供需形势分析[J].国土资源情报,2017 (1):4-9.

    Wu Rongqing. Lithium, new energy material: Analysis of resource reserves and supply-demand situation[J]. Land and Resources Information, 2017 (1):4-9.
    [5] 尹福光,蒲心纯,朱同兴,等.滇中特提斯侏罗纪盆地沉积特征及环境分析[J].特提斯地质,1994,18(18):74-87.

    Yin Fuguang, Pu Xinchun, Zhu Tongxing,et al. Sedimentology and environmental analysis of Jurassic basin in central Yunnan tethys[J]. Tethyan Geology,1994,18(18):74-87.
    [6] 王巨民,张永宏,朱绍兵.滇中(楚雄)晚三叠世盆地成因机制、聚煤古地理类型与找煤方向[J].中国煤田地质,2007,19(4):1-4.

    Wang Jumin, Zhang Yonghong, Zhu Shaobing. Central Yunnan(Chuxiong) Late Triassic basin genetic mechanism,coal-accumulating paleogeographic type and coal looking orientation[J]. Coal Geology of China,2007,19(4):1-4.
    [7] 谭秀民,张永兴,张利珍,等.能源金属锂资源开发利用现状及发展建议[J].矿产保护与利用,2017(05):87-92.

    Tan Xiumin, Zhang Yongxing, Zhang Lizhen,et al .Utilization status of lithium resources and development suggestions[J]. Conservation and Utilization of Mineral Resources, 2017(5):87-92.
    [8] 张驰,肖琳,张自生, 等.锂矿床主要类型、地质特征与成矿模式综述[J].低碳世界,2017(16):33-34.

    Zhang Chi, Xiao Lin, Zhang Zisheng,et al .Summary of main types, geological characteristics and metallogenic models of lithium deposits[J]. Low Carbon World, 2017(16):33-34.
    [9] 王秋舒,元春华,许虹.全球锂矿资源分布与潜力分析[J].中国矿业,2015,24(2):10-17.

    Wang Qiushu, Yuan Chunhua, Xu Hong. Analysis of the global lithium resource distribution and potential[J]. China Mining Magazine. 2015,24(2):10-17.
    [10] 温汉捷,罗重光,杜胜江,等.碳酸盐黏土型锂资源的发现及意义[J].科学通报,2020,65(1):53-59.

    Wen Hanjie, Luo Chongguang, Du Shengjiang,et al. Carbonate-hosted clay-type lithium deposit and its prospecting significance[J]. Chinese Science Bulletin,2020,65(1):53-59.
    [11] 王益友,吴萍 .江浙海岸带沉积物的地球化学标志[J]. 同济大学学报,1983 (4):79-87.

    Wang Yiyou, Wu Ping.Geochemical criteria of sediments in the coastal area of Jiangsu and Zhejiang provinces[J]. Journal of Tongji University, 1983 (4):79-87.
    [12] 王峰,刘玄春,邓秀芹,等 .鄂尔多斯盆地纸坊组微量元素地球化学特征及沉积环境指示意义[J].沉积学报,2017,35(6):1265-1273.

    Wang Feng, Liu Xuanchun, Deng Xiuqin,et al. Geochemical characteristics and environmental implications of trace elements of Zhifang Formation in Ordos Basin[J]. Acta Sedimentologica Sinica,2017,35(6):1265-1273.
    [13] 田景春,张翔 .沉积地球化学[M].北京:地质出版社,2016:63-77.

    Tian Jingchun, Zhang Xiang.Sedimentary geochemistry[M].Beijing: Geological Publishing House,2016:63-77.
    [14] 何庆,高键,董田,等.鄂西地区下寒武统牛蹄塘组页岩元素地球化学特征及沉积古环境恢复[J].沉积学报,2021,39(3):686-703.

    He Qing, Gao Jian, Dong Tian,et al.Elemental geochemistry and paleo-environmental conditions of the Lower Cambrian Niutitang shale in western Hubei province[J].Acta Sedimentologica Sinica,2021,39(3):686-703.
    [15] 王健,彭捷,操应长,等.东营凹陷中晚始新世古气候演化特征及其意义:以HK1井为例[J].沉积学报,2022,40(4):1059-1072.

    Wang Jian, Peng Jie, Cao Yingchang,et al.Mid-late Eocene paleoclimate characteristics and significance in the Dongying Depression: An example from well HK1[J].Acta Sedimentologica Sinica,2022,40(4):1059-1072.
    [16] 潘世乐,蒋赟,康健,等.柴北缘冷湖七号下干柴沟组上段古气候及物源分析[J].沉积学报,2021,39(5):1292-1304.

    Pan Shile, Jiang Yun, Kang Jian,et al. Analysis of paleoclimate and source of the upper section, Lower Ganchaigou Formation,Lenghu No.7 region,north Qaidam Basin[J].Acta Sedimentologica Sinica,2021,39(5):1292-1304.
    [17] 邓宏文,钱凯 .沉积地球化学与环境分析[M].兰州:甘肃科学技术出版社,1993,1(1)95-104.

    Deng Hongwen, Qian Kai.Sedimentary geochemistry and environmental analysis[M].Lan zhou: Gansu Science and Technology Press,1993,1(1):95-104.
    [18] 李进龙,陈东敬 . 古盐度定量研究方法综述[J].油气地质与采收率,2003,10(5):1-3.

    Li Jinlong, Chen Dongjing. Summary of quanti-fied research method on paleosalinity[J]. Petroleum Geology and Recovery,2003,10(5):1-3
    [19] 陈会军,刘招君,柳蓉,等 . 银额盆地下白垩统巴音戈壁组油页岩特征及古环境[J].吉林大学学报(地球科学版),2009,39( 4) : 669-675.

    Chen Huijun, Liu Zhaojun, Liu Rong,et al .Characteristic of oil shale and paleoenvironment of the Bayingebi Formation in the Lower Cretaceous in Yin’e Basin[J]. Journal of JilinUniversity ( Earth Science Edition ),2009,39 ( 4 ):669-675.
    [20] 倪善芹,侯泉林,王安建,等 . 碳酸盐岩中锶元素地球化学特征及其指示意义:以北京下古生界碳酸盐岩为例[J].地质学报,2010,84( 10) : 1510-1516.

    Ni Shanqin, Hou Quanlin, Wang Anjian,et al.Geochemical characteristics of carbonate rocks and its geological implications:Taking the Lower Palaeozoic carbonate rock of Beijing area as an example[J].Acta Geologica Sinica,2010,84(10):1510-1516.
    [21] 王敏芳,焦养泉,王正海,等 . 沉积环境中古盐度的恢复:以吐哈盆地西南缘水西沟群泥岩为例[J]. 新疆石油地质,2005,26(6):719-722.

    Wang Minfang, Jiao Yangquan, Wang ZhengHai,et al. Recovery paleosalinity in sedimentary environment:An example of mudstone in Shuixigou Group, southwestern margin of Turpan-Hami Basin[J]. Xinjiang Petroleum Geology,2005,26(6):719-722.
    [22] 文华国,郑荣才,唐飞,等 .鄂尔多斯盆地耿湾地区长 6 段古盐度恢复与古环境分析[J].矿物岩石,2008,28(1):114-120.

    Wen Huaguo, Zheng Rongcai, Tang Fei, et al. Reconstruction and analysis of paleosalanity and paleoenvironment of the Chang 6 member in the Gengwan region, Ordos Basin[J].Journal of Mineralogy and Petrology,2008,28(1):114-120.
    [23] 钱利军,陈洪德,林良彪,等 . 四川盆地西缘地区中侏罗统沙溪庙组地球化学特征及其环境意义[J].沉积学报,2012,30(6):1061-1071.

    Qian Lijun, Chen Hongde, Lin Liangbiao,et al. Geochemical characteristics and environmental implications of Middle Jurassic Shaximiao Formation,western margin of Sichuan Basin[J].Acta Sedimentologica Sinica,2012,30(6):1061-1071.
    [24] 姚双秋,庞崇进,温淑女,等. 桂西上二叠统合山组富锂黏土岩的发现及意义[J].大地构造与成矿学,2021,45(5):951-962.

    Yao Shuangqiu, Pang Chongjin, Wen Shunü,et al. Li-rich claystone in the Upper Permian Heshan Formation in western Guangxi and its prospecting significance[J]. Geotectonica et Metallogenia,2021,45(5):951-962.
    [25] 钟海仁. 重庆南川铝土矿沉积物源及含矿岩系伴生锂赋存状态和富集机理研究[D]. 北京:中国地质大学(北京),2020.

    Zhong Hairen. Provenance of bauxite,and occurrence state,enrichment mechanism of associated lithium in ore-bearing rocks of deposits in Nanchuan district,Chongqing[D]. Beijing:China University of Geosciences,Beijing, 2020.
    [26] 王行军,王梓桐,王根厚,等.滇西北鹤庆县松桂铝土矿床地球化学特征及成矿环境分析[J].西北地质,2017,50(3):205-221.

    Wang Xingjun, Wang Zitong, Wang Genhou,et al. Geochemical characteristics and ore-forming environment of the Songgui bauxite deposit in Heqing county,northwest Yunnan province[J]. Northwestern Geology, 2017,50(3):205-221.
    [27] 莫光员,吴启美. 黔北地区浣溪铝土矿床地球化学特征及指示意义[J].矿产与地质,2020,34(2):228-235,246.

    Mo Guangyuan, Wu Qimei. Geochemical characteristics and indicative significance of Huanxi bauxite deposit in north Guizhou[J]. Mineral Resources and Geology, 2020,34(2):228-235,246.
    [28] Russell AD, Morford J L The behavior of redox-sensitive metals across a laminated-massive-laminated transition in Saanich Inlet, Columbia British [J] Marine Geology, 2001, 174(1/2/3/4): 341-354.
    [29] 常华进,储雪蕾,冯连君,等 . 氧化还原敏感微量元素对古海洋沉积环境的指示意义[J]. 地质论评,2009,55(1):91-99.

    Chang Huajin, Chu Xuelei, Feng Lianjun,et al. Redox sensitive trace elements as paleoenvironments proxies[J]. Geological Review,2009,55(1):91-99.
    [30] 刘安,李旭兵,王传尚,等 . 湘鄂西寒武系烃源岩地球化学特征与沉积环境分析[J]. 沉积学报,2013,31(6):1122-1132.

    Liu An, Li XuBing, Wang Chuanshang,et al. Analysis of geochemical feature and sediment environment for hydrocarbon source rocks of Cambrian in west Hunan-Hubei area[J]. Acta Sedimentologica Sinica,2013,31(6):1122-1132.
    [31] 徐崇凯,刘池洋,郭佩,等 . 潜江凹陷古近系潜江组盐间泥岩地球化学特征及地质意义[J]. 沉积学报,2018,36(3):617-629.

    Xu Chongkai, Liu Chiyang, Guo Pei,et al. Geochemical characteristics and their geological significance of intrasalt mudstones from the Paleogene Qianjiang Formation in the Qianjiang Graben,Jianghan Basin,China[J]. Acta Sedimentologica Sinica,2018,36(3):617-629.
    [32] Dill H, Teschner M, Wehner H .Petrography, inorganic and organic geochemistry of Lower Permian carbonaceous fan sequences (“Brandschiefer Series”) — Federal Republic of Germany: Constraints to their paleogeography and assessment of their source rock potential[J].Chemical Geology,1988,67(3/4): 307-325.
    [33] 金明,李妩巍 . 乌兰花地区下白垩统、上新统岩石地球化学特征及其古气候演变[J]. 铀矿地质,2003,19(6):349-354.

    Jin Ming, Li Wuwei.Petrogeochemical characteristics of Lower Cretaceous and Pliocene rocks and paleoclimate evolution in Wulanhua region[J]. Uranium Geology,2003,19(6):349-354.
    [34] 李广之,胡斌,邓天龙,等 . 微量元素 V 和 Ni 的油气地质意义[J]. 天然气地球科学,2008,19(1):13-17.

    Li Guangzhi, Hu Bin, Deng Tianlong,et al. Petroleum geological significance of microelements V and Ni[J]. Natural Gas Geoscience,2008,19(1):13-17.
    [35] 刘江斌,李文厚,任战利,等. 鄂尔多斯盆地泾川地区三叠系延长组烃源岩特征及其沉积环境[J].地质科学,2020,55(4):989-1000.

    Liu Jiangbin, Li Wenhou, Ren Zhanli, et al. Characteristics and sedimentary environment of the hydrocarbon source rock of the Triassic Yanchang Formation in Jingchuan area, Ordos Basin[J]. Chinese Journal of Geology, 2020,55(4):989-1000.
    [36] 冯伟明,李嵘,赵瞻,等. 滇东北DD1井五峰组—龙马溪组地层界线划分及沉积环境演变[J].中国地质,2021,48(1):297-308.

    Feng Weiming, Li Rong, Zhao Zhan, et al. Boundary definition of Wufeng Formation and Longmaxi Formation in well DD1 and sedimentary environment evolution of northeastern Yunnan[J].Geology in China, 2021,48(1):297-308.
    [37] 陈平,林卫兵,龚大建,等. 贵州岑巩区块下寒武统变马冲组黑色页岩沉积地球化学特征及其沉积环境意义[J].地质科学,2020,55(4):1025-1043.

    Chen Ping, Lin Weibing, Gong Dajian, et al. Sedimentary geochemical characteristics and its sedimentary environment significance of the black shale of the Lower Cambrian Bianmachong Formation in the Cen’gong block, Guizhou province [J].Chinese Journal of Geology, 2020,55(4):1025-1043.
    [38] Zheng Y, Anderson R F, van Geen A, et al. Preservation of particulate non-lithogenic uranium in marine sediments[J]. Geochimica et Cosmochimica Acta,2002,66(17):3085-3092
    [39] Zheng Y, Anderson R F, van Geen A, et al. Remobilization of authigenic uranium in marine sediments by bioturbation[J] .Geochimica et Cosmochimica Acta,2002,66(10):1759-1772
    [40] Zheng Y, Anderson R F, van Geen A, et al. Authigenic molybdenum formation in marine sediments: A link to pore water sulfide in the Santa Barbara Basin[J]. Geochimica et Cosmochimica Acta,2000,64(24):4165-4178.
    [41] Helz G R, Miller C V, Charnock J M, et al. Mechanism of molybdenum removal from the sea and its concentration in black shales: EXAFS evidence[J]. Geochimica et Cosmochimica Acta,1996,60(19):3631-3642.
    [42] Algeo TJ, Tribovillard N, Environmental analysis of paleoceanographic systems based on molybdenum-uranium Covariation[J]. Chemical Geology,2009,268(3/4):211-225.
    [43] Tribovillard N, Algeo T J, Baudin F, et al. Analysis of marine environmental conditions based onmolybdenum-uranium covariation—Applications to Mesozoic paleoceanography[J]. Chemical Geology, 2012, 324-325:46-58.
    [44] 李星波,季军良,曹展铭,等. 柴达木盆地北缘古—新近纪河湖相沉积物颜色的气候意义[J].地球科学,2021,46(9):3278-3289.

    Li Xingbo, Ji Junliang, Cao Zhanming,et al. The climatic significance of the color of the Paleo-Neogene fluvial and lacustrine sediments in the northern Qaidam Basin[J]. Earth Science,2021,46(9):3278-3289.
    [45] 宋运红,刘凯,戴慧敏,等. 松嫩平原东部典型黑土剖面孢粉组合时代及其对古气候的指示[J].地质通报,2022,41(9):1528-1538.

    Song Yunhong, Liu Kai, Dai Huimin,et al. Palynological assemblages of typical black soil profile in the eastern Songliao Plain and their age and its implication for Paleoclimatic [J] Geological Bulletin of China,2022,41(9):1528-1538.
    [46] 肖春晖,王永红,林间. 近1 Ma以来帕里西维拉海盆沉积物物源和古气候:粒度和黏土矿物特征的指示[J].沉积学报,2022,40(2):508-524.

    Xiao Chunhui, Wang Yonghong, Lin Jian. Provenance and paleoclimate of sediments in the Parece Vela Basin in past 1 Ma: Inferences from grain-size and clay mineral distribution[J]. Acta Sedimentologica Sinica,2022,40(2):508-524.
    [47] 查理思,吴克宁,梁思源,等. 仰韶村遗址黏土矿物组成特征及古气候演变[J].土壤通报,2019,50(5):1026-1032.

    Zha Lisi, Wu Kening, Liang Siyuan, et al. Clay mineral composition and paleoclimate evolution in Yangshao Village Site[J]. Chinese Journal of Soil Science, 2019,50(5):1026-1032.
    [48] 何龙,王云鹏,陈多福. 川南地区晚奥陶—早志留世沉积环境与古气候的地球化学特征[J].地球化学,2019,48(6):555-566.

    He Long, Wang Yunpeng, Chen Duofu. Geochemical features of sedimentary environment and paleoclimate during Late Ordovician to Early Silurian in southern Sichuan Basin[J]. Geochimica, 2019,48(6):555-566.
    [49] 范玉海,屈红军,王辉,等 . 微量元素分析在判别沉积介质环境中的应用:以鄂尔多斯盆地西部中区晚三叠世为例[J].中国地质,2012,39(2):382-389.

    Fan Yuhai, Qu Hongjun, Wang Hui, et al. The application of trace elements analysis to identifying sedimentary media environment: A case study of Late Triassic strata in the middle part of western Ordos Basin[J].Geology in China,2012,39(2):382-389.
    [50] 莱尔曼. 湖泊的化学地质学和物理学[M].王苏民译.北京:地质出版社,1989.[

    Lerman A.Chemical geology and physics of lakes[M].Wang Sumin trans. Beijing: Geological Publishing House,1989.]
    [51] Adams J S, Kraus M J, Wing S L. Evaluating the use of weathering indices for determining mean annual precipitation in the ancient stratigraphic record [J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2011,309(3/4): 358-366.
    [52] 张涛,季宏兵,温月花,等. 昆明石林碳酸盐岩红色风化壳元素地球化学特征[J].高校地质学报,2017,23(3):465-477.

    Zhang Tao, Ji Hongbing, Wen Yuehua,et al. Geochemical characteristics of red weathering cruston carbonate rocks in Shilin county,Kunming[J]. Geological Journal of China Universities, 2017,23(3):465-477.
    [53] Cox R, Lower D R and Cullers R L. The influence of sediment recycling and basement composition on evolution of mudrock chemistry in the southwestern United States [J]. Geochimica et Cosmochimica Acta 1995, 59(14):2919-2940.
    [54] McLennan S M, Hemming S, McDaniel D K, et al. 1993. Geochemical approaches to sedimentation, provenance, and tectonics [J]. Special Paper of the Geological Society of America, 284: 21-40.
    [55] 董红梅,宋友桂. 黏土矿物在古环境重建中的应用[J].海洋地质与第四纪地质,2009,29(6):119-130.

    Dong Hongmei, Song Yougui. Clay mineralogy and its application to paleo-environmental reconstruction[J] Marine Geology & Quaternary Geology, 2009, 29(6): 119-130.
    [56] 张立强,罗晓容,刘楼军,等. 准噶尔盆地南缘新生界黏土矿物分布及影响因素.地质科学,2005, 40(3): 363-375.

    Zhang Liqiang, Luo Xiaorong, Liu Loujun,et al. Controls on clay mineral distribution in the Cenozoic sediments of the southern Junggar Basin, NW China[J]. Chinese Journal of Geology,2005, 40(3): 363-375.
    [57] 金章东. 湖泊沉积物的矿物组成、成因、环境指示及研究进展[J]. 地球科学与环境学报,2011,33(1):34-44,77.

    Jin Zhangdong. Composition, origin and environmental interpretation of minerals in lake sediments and recent progress[J]. Journal of Earth Sciences and Environment, 2011, 33(1): 34-44, 77.
    [58] 王英华. 沉积环境与岩矿、地球化学指相标志[J]. 石油实验地质,1980(4):18-26.

    Wang Yinghua. Sedimentary environment and petrographic and geochemical index signs[J]. Petroleum Geology & Experiment, 1980(4): 18-26.
  • 加载中
图(7) / 表(2)
计量
  • 文章访问数:  71
  • HTML全文浏览量:  103
  • PDF下载量:  0
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-01-05
  • 修回日期:  2021-05-24
  • 录用日期:  2021-07-26
  • 网络出版日期:  2023-03-02

目录

    /

    返回文章
    返回