留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于镂空阵列探头的反射式光声/热声双模态组织成像

谢实梦 黄林 王雪 迟子惠 汤永辉 郑铸 蒋华北

谢实梦, 黄林, 王雪, 迟子惠, 汤永辉, 郑铸, 蒋华北. 基于镂空阵列探头的反射式光声/热声双模态组织成像[J]. 机械工程学报, 2021, 70(10): 100701. doi: 10.7498/aps.70.20202012
引用本文: 谢实梦, 黄林, 王雪, 迟子惠, 汤永辉, 郑铸, 蒋华北. 基于镂空阵列探头的反射式光声/热声双模态组织成像[J]. 机械工程学报, 2021, 70(10): 100701. doi: 10.7498/aps.70.20202012
Xie Shi-Meng, Huang Lin, Wang Xue, Chi Zi-Hui, Tang Yong-Hui, Zheng Zhu, Jiang Hua-Bei. Reflection mode photoacoustic/thermoacoustic dual modality imaging based on hollow concave array[J]. JOURNAL OF MECHANICAL ENGINEERING, 2021, 70(10): 100701. doi: 10.7498/aps.70.20202012
Citation: Xie Shi-Meng, Huang Lin, Wang Xue, Chi Zi-Hui, Tang Yong-Hui, Zheng Zhu, Jiang Hua-Bei. Reflection mode photoacoustic/thermoacoustic dual modality imaging based on hollow concave array[J]. JOURNAL OF MECHANICAL ENGINEERING, 2021, 70(10): 100701. doi: 10.7498/aps.70.20202012

基于镂空阵列探头的反射式光声/热声双模态组织成像

doi: 10.7498/aps.70.20202012
详细信息
    通讯作者:

    E-mail: lhuang@uestc.edu.cn

  • 中图分类号: 07.05.Pj, 87.85.Pq, 87.57.-s, 87.57.C-

Reflection mode photoacoustic/thermoacoustic dual modality imaging based on hollow concave array

More Information
  • 摘要: 光声和热声成像技术除激发源不同外, 可共用一套数据采集和处理系统, 具有天然的融合优势. 本文提出了一种基于镂空阵列的反射式光声/热声双模态成像技术, 该技术利用光纤与天线, 通过镂空阵列的开孔进行光声/热声信号激发, 使得激发光、微波和接收超声信号共轴, 构成明场光声/热声双模态成像模式. 通过对探头镂空部分晶元相位和幅值的补偿校准, 成功实现了3 mm直径塑料管、人体手臂、手背和脚背的双模态成像. 实验结果表明: 系统空间分辨率为0.33 mm, 双模态成像技术可同时提供组织的光学和微波吸收分布, 有助于肿瘤、糖尿病足等疾病的精准检测, 具有极广泛的临床应用前景.

     

  • 图  (a)为反射式光声/热声双模态成像系统框图; (b), (c)分别为反射式光声和热声成像探头接口实物图; (d), (e)分别为镂空探头俯视和侧视实物图

    Figure  1.  (a) Schematic of the photoacoustic (PA)/thermoacoustic (TA) dual modality imaging system; (b), (c) photograph of the PA and TA imaging system, respectively; (d), (e) Top view and side view of the hollow concave array, respectively.

    图  镂空阵列探头校准结果图 (a) 第47和48晶元接收到的热声信号波形; (b) 第49晶元所接收热声信号校准前和校准后的波形图, 以及与第48晶元热声信号波形图; (c), (d) 分别为校准前和校准后的热声图像

    Figure  2.  The calibration results of hollow transducer array: (a) TA signal received by the 47 th and 48 th elements; (b) the TA signal before and after calibration of the 49 th element, and the TA signal of the 48 th element; (c), (d) are the TA images before and after calibration, respectively. TAM: Thermoacoustic Amplitude.

    图  双模态成像性能验证实验 (a), (b) 分别为待成像物体示意图和实物图; (c), (d) 分别为热声图像和680 nm激发波长得到的光声图像; (e)融合后的热声/光声双模态图像

    Figure  3.  (a), (b) Schematic and photograph of the target, respectively; (c), (d) TA and PA images obtained at 680 nm, respectively; (e) the fused TA/PA image. PAM:Photoacoustic Amplitude

    图  空间分辨率实验 (a) 两根直径66 μm铜丝的热声成像结果; (b) 沿(a)中红色虚线的热声图像一维轮廓分布

    Figure  4.  TAI of two copper wires for system spatial resolution evaluation: (a) Recovered TA image; (b) recovered microwave absorption profile along the red dashed line shown in (a). TAM: Thermoacoustic Amplitude.

    图  正常人手臂双模态成像, 左侧为待成像平面示意图, A和B分别为自愿者1和2待成像手臂平面示意图; (a)−(d)和(e)−(h)依次为为自愿者1和2手臂的热声图像, 680, 720, 800 nm激发光声图像

    Figure  5.  The picture is the schematic of the opisthenar to be imaged, A and B are the detection plan of volunteers 1 and 2, respectively. (a)−(d) and (e)−(f) are TA image, 680 nm PA image, 720 nm PA image and 800 nm PA image of volunteers 1 and 2, respectively. TAM: Thermoacoustic Amplitude, PAM: Photoacoustic Amplitude.

    图  正常人手背双模态成像 (a) 待成像平面示意图; (b) 对应层面MRI图; (c)−(f) 依次为手背的热声图像, 680, 720和800 nm激发光声图像

    Figure  6.  (a) Schematic diagram of the plane to be imaged; (b) the corresponding MRI image; (c)−(f) are TA image, 680 nm PA image, 720 nm PA image and 800 nm image of hand, respectively. TAM: Thermoacoustic Amplitude, PAM: Photoacoustic Amplitude.

    图  正常人脚背双模态成像 (a), (b) 待成像平面彩色多普勒超声图; (c)成像层面示意图; (d)−(g) 依次为脚背的热声图像, 680, 720和800 nm激发光声图像

    Figure  7.  (a), (b) The color Doppler ultrasound images; (c) the schematic of imaging plane; (d)−(g) TA image, 680 nm PA image, 720 nm PA image and 800 nm image of instep, respectively. TAM: Thermoacoustic Amplitude, PAM: Photoacoustic Amplitude.

  • [1] Shi J, Wong T T W, He Y, Li L, Wang L V 2019 Nat. Photonics 13 609 doi: 10.1038/s41566-019-0441-3
    [2] Wong T T W, Zhang R, Zhang C, Hsu H C, Maslov K, Wang L, Shi J, Chen R, Shung K K, Zhou Q F, Wang L V 2017 Nat. Commun. 8 1386 doi: 10.1038/s41467-017-01649-3
    [3] Wang Y C, Liang G R, Liu F, Chen Q, Xi L 2020 IEEE. Trans. Biomed. Eng. 99 1
    [4] Gottschalk S, Degtyaruk O, Mc Larney B, Rebling J, Hutter M A, Deán-Ben X L, Shoham S, Razansky D 2019 Nat. Biomed. Eng. 3 392 doi: 10.1038/s41551-019-0372-9
    [5] Merčep E, Herraiz J L, Deán-Ben X L, Razansky D 2019 Ligh-Sci. Appl. 8 1 doi: 10.1038/s41377-018-0109-7
    [6] Jiang H B 2015 Photoacoustic Tomography (Boca Raton, FL: CRC Press) pp1−50
    [7] Ivankovic I, Merčep, Elena, Schmedt, C G, Deán-Ben X L, Razansky D 2019 Radiology 291 45 doi: 10.1148/radiol.2019181325
    [8] Attia ABE, Balasundaram G, Moothanchery M, Dinish US, Bi R, Ntziachristos V, Olivo M 2019 Photoacoustics 16 100144 doi: 10.1016/j.pacs.2019.100144
    [9] Kruger RA, Kopecky KK, Aisen AM, Reinecke DR, Kruger GA, Kiser WL Jr 1999 Radiology 211 275 doi: 10.1148/radiology.211.1.r99ap05275
    [10] Wang X, Bauer D R, Witte R, Xin H 2012 IEEE. Trans. Biomed. Eng. 59 2782 doi: 10.1109/TBME.2012.2210218
    [11] Huang L, Yao L, Liu L, Rong J, Jiang H B 2012 Appl. Phys. Lett. 101 244106 doi: 10.1063/1.4772484
    [12] Qin H, Cui Y S, Wu Z J, Chen Q, Xing D 2020 IEEE. Photonics. J. 99 1
    [13] Huang L, Li T, Jiang H 2017 Med. Phys. 44 1494 doi: 10.1002/mp.12138
    [14] Chi Z H, Zhao Y, Yang J G, Li TT, Jiang H B 2018 IEEE. Trans. Biomed. Eng. 66 1598
    [15] Zheng Z, Huang L, Jiang HB 2018 Appl. Phys. Lett. 113 253702 doi: 10.1063/1.5054652
    [16] Eckhart AT, Balmer RT, See WA, et al. 2011 IEEE Trans. Biomed. Eng. 58 2238 doi: 10.1109/TBME.2011.2128319
    [17] Patch S, Hull D, See W, Hanson G W 2016 IEEE Trans. Ultrason. Ferroelectr. Freq. Control 63 245 doi: 10.1109/TUFFC.2015.2513018
    [18] Ku G, Fornage B D, Jin X, Xu M H, Hunt K K, Wang L V 2005 Technol. Cancer Res. T. 4 559 doi: 10.1177/153303460500400509
    [19] Pramanik M, Ku G, Li C H, Wang L V 2008 Med. Phys. 35 2218 doi: 10.1118/1.2911157
    [20] Ke H, Erpelding T N, Jankovic L, Liu C, Wang L V 2012 J. Biomed. Opt. 15 056010
    [21] Merčep E, Deán-Ben X L, Razansky D 2017 IEEE. Trans. Med. Imaging. 36 2129 doi: 10.1109/TMI.2017.2706200
    [22] Reinecke D R, Kruger R A, Lam R B, Delrio S P 2010 Proc. SPIE Int. Soc. Opt. Eng. 7564 489
    [23] Li M C, Liu C B, Gong X J, Zheng R Q, Bai Y Y, Xing M Y, Du X M, Liu X Y, Zeng J, Lin R Q, Zhou H C, Wang S J, Lu G M, Zhu W, Fang C H, Song L 2018 Biomed. Opt. Express 9 1408 doi: 10.1364/BOE.9.001408
    [24] American Laser Institute. American National Standards for the Safe Use of Lasers ANSIZ136.1. Orlando, FL: American Laser Institute, 2014
    [25] Huang L, Ge S, Zheng Z, Jiang H B 2018 Med. Phys. 46 851
    [26] IEEE standard for safety levels with respect to human exposure to radio frequency electromagnetic fields 3 kHz to 300 GHz, IEEE Standard C95.1; 1999
    [27] Hoelen C G A, de Mul F F M 2001 Appl. Opt. 39 5872
    [28] Jeon S, Park E Y, Choi W, Managuli R, Kim C 2019 Photoacoustics 15 100136 doi: 10.1016/j.pacs.2019.100136
    [29] Zhang Y P, Li E, Zhang J, Yu C Y, Zheng H, Guo G F 2018 Rev. Sci. Instrum. 89 024701 doi: 10.1063/1.4993507
    [30] Wang X, Huang L, Chi Z H, Jiang H B. 2021 Phy. Med. Biol. (Under Review)
    [31] Choi W, Park E Y, Jeon S, Kim C 2018 Biomed. Eng. Lett. 8 1 doi: 10.1007/s13534-018-0058-3
    [32] Ji Z, Ding W Z, Ye F H, Lou C G 2016 Ultrason. Imaging 38 276 doi: 10.1177/0161734615601987
    [33] Chi Z H, Liang X, Wang X, Huang L, Jiang H B 2020 IEEE J. Electromagnet. RF Microwaves Med. Biol. 99 1
    [34] Yang J G, Zhang G, Wu M, Shang Q Q, Huang L, Jiang H B 2019 J. Biophotonics 12 e201900004
  • 加载中
图(7)
计量
  • 文章访问数:  196
  • HTML全文浏览量:  219
  • PDF下载量:  11
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-11-30
  • 修回日期:  2021-01-06
  • 网络出版日期:  2021-05-27
  • 发布日期:  2021-05-27

目录

    /

    返回文章
    返回