留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

仿生咀嚼机器人弹性颞下颌关节设计与性能分析

秦文龙 丛明 任翔 温海营 刘冬

秦文龙, 丛明, 任翔, 温海营, 刘冬. 仿生咀嚼机器人弹性颞下颌关节设计与性能分析[J]. 机械工程学报, 2020, 37(3): 512-518, 526. doi: 10.7507/1001-5515.201812051
引用本文: 秦文龙, 丛明, 任翔, 温海营, 刘冬. 仿生咀嚼机器人弹性颞下颌关节设计与性能分析[J]. 机械工程学报, 2020, 37(3): 512-518, 526. doi: 10.7507/1001-5515.201812051
Wenlong QIN, Ming CONG, Xiang REN, Haiying WEN, Dong LIU. Design and performance analysis of elastic temporomandibular joint structure of biomimetic masticatory robot[J]. JOURNAL OF MECHANICAL ENGINEERING, 2020, 37(3): 512-518, 526. doi: 10.7507/1001-5515.201812051
Citation: Wenlong QIN, Ming CONG, Xiang REN, Haiying WEN, Dong LIU. Design and performance analysis of elastic temporomandibular joint structure of biomimetic masticatory robot[J]. JOURNAL OF MECHANICAL ENGINEERING, 2020, 37(3): 512-518, 526. doi: 10.7507/1001-5515.201812051

仿生咀嚼机器人弹性颞下颌关节设计与性能分析

doi: 10.7507/1001-5515.201812051
详细信息
    通讯作者:

    任翔,Email:renxiangdy@foxmail.com

Design and performance analysis of elastic temporomandibular joint structure of biomimetic masticatory robot

More Information
  • 摘要: 仿生咀嚼机器人弹性颞下颌关节设计与性能分析。

     

  • 图  弹性颞下颌关节仿生结构与工作原理

    Figure  1.  Biomimetic structure of elastic temporomandibular joint and its working principle

    图  咀嚼机器人三维模型

    Figure  2.  3D model of the masticatory robot

    图  咀嚼机器人机构型式

    Figure  3.  Mechanism of the masticatory robot

    图  切牙咀嚼轨迹(相对于基坐标系{G})

    Figure  4.  Chewing trajectory of the incisor (in the ground coordinate system {G})

    图  弹簧变形量及变形速度

    Figure  5.  Deformation and changing rate of the spring

    图  电机驱动力与驱动功率

    Figure  6.  Driving force and driving power

    图  实验设计与响应面拟合

    Figure  7.  Design of experiments and fit of response surfaces

  • [1] 王嘉津, 左国坤, 张佳楫, 等. 腕功能康复机器人按需辅助控制策略研究. 生物医学工程学杂志, 2020, 37(1): 129-135.
    [2] 李亮, 丁辉, 王广志. 神经外科手术机器人运动学模型参数辨识及评价方法. 生物医学工程学杂志, 2019, 36(6): 994-1002.
    [3] RAO Y V D, Parimi A M, Rahul D P, et al. Robotics in dental implantation. Materials Today, 2017, 4(8): 9327-9332.
    [4] Ren L, Yang J, Tan Y, et al. An intelligent dental robot. Advanced Robotics, 2018, 32(12): 659-669. doi: 10.1080/01691864.2018.1482231
    [5] Wang Guifei, Ming Cong, Xiang Ren, et al. Chewing-cycle trajectory planning for a dental testing chewing robot. International Journal of Robotics and Automation, 2019. DOI: 10.2316/J.2019.206-5388.
    [6] Kalani H, Moghimi S, Akbarzadeh A. Toward a bio-inspired rehabilitation aid: sEMG-CPG approach for online generation of jaw trajectories for a chewing robot. Biomed Signal Process Control, 2019, 51: 285-295. doi: 10.1016/j.bspc.2019.02.022
    [7] Kizghin D A, Nelson C A. Optimal design of a parallel robot for dental articulation//2019 Design of Medical Devices Conference (DMD2019), Minnesota: University of Minnesota, 2019: 16-18.
    [8] Xu W, Bronlund J E. Mastication robots, Berlin: Springer-Verlag, 2010: 1-28.
    [9] Wang X, Xu P, Potgieter J, et al. Review of the biomechanics of TMJ//International Conference on Mechatronics and Machine Vision in Practice, Auckland: IEEE, 2012: 381-386.
    [10] 易新竹. 学. 北京: 人民卫生出版社, 2013.
    [11] 孙钟雷, 孙永海, 万鹏, 等. 仿生咀嚼装置设计与试验. 农业机械学报, 2011, 42(8): 214-218.
    [12] Cheng Chen, Xu Weiliang, Shang Jianzhong. Kinematics, stiffness and natural frequency of a redundantly actuated masticatory robot constrained by two point-contact higher kinematic pairs//2015 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Hamburg: IEEE, 2015: 963-970.
    [13] Cheng Chen, Xu Weiliang, Shang Jianzhong. Optimal distribution of the actuating torques for a redundantly actuated masticatory robot with two higher kinematic pairs. Nonlinear Dyn, 2015, 79(2): 1235-1255. doi: 10.1007/s11071-014-1739-9
    [14] Mostashiri N, Chen Cheng, Wang Jianxiao, et al. In-vitro measurement of reaction forces in the temporomandibular joints using a redundantly actuated parallel chewing robot//2019 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM), Hong Kong: IEEE, 2019: 1467-1472.
    [15] 杨廷力, 刘安心, 罗玉峰, 等. 机器人机构拓扑结构学. 北京: 科学出版社, 2012.
    [16] Wen Haiying, Xiang Ren, Ming Cong, et al. Force analysis and experiment of a redundantly actuated chewing robot//2017 24th International Conference on Mechatronics and Machine Vision in Practice (M2VIP), Auckland: IEEE, 2017: 1-6.
    [17] 温海营, 任翔, 徐卫良, 等. 咀嚼机器人颞下颌关节仿生设计及试验测试. 吉林大学学报:工学版, 2019, 49(3): 943-952.
    [18] Wen Haiying, Ming Cong, Wang Guifei, et al. Dynamics and optimized torque distribution based force/position hybrid control of a 4-DOF redundantly actuated parallel robot with two point-contact constraints. Int J Control Autom Syst, 2019, 17(5): 1293-1303. doi: 10.1007/s12555-018-0429-7
    [19] Sagl B, Schmid-Schwap M, Piehslinger E, et al. A dynamic jaw model with a finite-element temporomandibular joint. Frontiers in Physiology, 2019, 10: 1156. doi: 10.3389/fphys.2019.01156
    [20] Commisso M S, Calvo-Gallego J L, Mayo J, et al. Quasi-linear viscoelastic model of the articular disc of the temporomandibular joint. Exp Mech, 2016, 56(7): 1169-1177. doi: 10.1007/s11340-016-0161-2
    [21] 中国国家标准化管理委员会. GB/T 2089-2009 普通圆柱螺旋压缩弹簧尺寸及参数(两端圈并紧磨平或制扁). 北京: 中国标准出版社, 2009.
    [22] 魏敦文, 葛文杰, 高涛. 仿生灵感下的弹性驱动器的研究综述. 机器人, 2017, 39(4): 541-550.
  • 加载中
图(7)
计量
  • 文章访问数:  408
  • HTML全文浏览量:  160
  • PDF下载量:  0
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-12-29
  • 修回日期:  2020-03-13
  • 发布日期:  2020-03-17

目录

    /

    返回文章
    返回