留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

硬脂酸淀粉酯制备及其Pickering乳液稳定性研究

杜思琦 王小凤 张一凡 杨越越 李佳楠 朱旻鹏

杜思琦,王小凤,张一凡,等. 硬脂酸淀粉酯制备及其Pickering乳液稳定性研究[J]. 食品工业科技,2023,44(9):1−9. doi: 10.13386/j.issn1002-0306.2022090287
引用本文: 杜思琦,王小凤,张一凡,等. 硬脂酸淀粉酯制备及其Pickering乳液稳定性研究[J]. 食品工业科技,2023,44(9):1−9. doi: 10.13386/j.issn1002-0306.2022090287
DU Siqi, WANG Xiaofeng, ZHANG Yifan, et al. Preparation of Starch Stearate Ester and Stability of Pickering Emulsion[J]. Science and Technology of Food Industry, 2023, 44(9): 1−9. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2022090287
Citation: DU Siqi, WANG Xiaofeng, ZHANG Yifan, et al. Preparation of Starch Stearate Ester and Stability of Pickering Emulsion[J]. Science and Technology of Food Industry, 2023, 44(9): 1−9. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2022090287

硬脂酸淀粉酯制备及其Pickering乳液稳定性研究

doi: 10.13386/j.issn1002-0306.2022090287
基金项目: 辽宁省科技特派行动专项计划资助(2021JH5/10400022);辽宁省大学生创新创业训练计划项目资助(S202110166050)。
详细信息
    作者简介:

    杜思琦(1997−),女,硕士研究生,研究方向:粮油深加工与转化,E-mail: dsq15735578773@163.com

    通讯作者:

    朱旻鹏(1977−),男,博士,副教授,研究方向:粮油深加工与转化,E-mail:synuzmp@163.com

  • 中图分类号: TS235.1

Preparation of Starch Stearate Ester and Stability of Pickering Emulsion

  • 摘要: 以大米淀粉为原料,采用微波辅助法制备硬脂酸淀粉酯(starch stearate ester,SSE),对硬脂酸淀粉酯及其稳定的Pickering乳液进行了表征。结果表明:随着硬脂酸(stearic acid,SA)添加量的增加,SSE的取代度先增大后减小,而酯化反应效率则先降低后增加再降低;随着水分含量的增加,SSE的取代度和酯化反应效率先升高后减低,盐酸添加量、微波反应时间和微波功率对SSE的取代度和酯化反应效率的影响与水分含量的影响相同;X射线衍射分析表明,SSE仍为A型结晶结构;随着取代度增加,SSE颗粒的三相接触角逐渐增大,在取代度为0.0317时接触角为89.6°,具有良好的油水两亲性。以SSE为乳化剂,对其构建的Pickering乳液特性进行了研究,对乳液的乳化指数、粒径和微观结构进行了分析。在SSE添加量为2.5%、油相体积为60%时,Pickering乳液的乳化指数最大,SSE取代度越高,形成的乳液液滴粒径越小、乳液越稳定;粒度分析及激光共聚焦显微镜观察表明,SSE可形成稳定水包油型 Pickering 乳液且乳液液滴粒径分布较窄。

     

  • 图  SA添加量对SSE取代度及反应效率的影响

    Figure  1.  Effects of SA addition on the DS and reaction efficiency of SSE

    图  水分含量对SSE取代度及反应效率的影响

    Figure  2.  Effects of moisture content on the DS and reaction efficiency of SSE

    图  盐酸添加量对SSE取代度及反应效率的影响

    Figure  3.  Effects of hydrochloric acid addition on the DS and reaction efficiency of SSE

    图  微波时间对SSE取代度及反应效率的影响

    Figure  4.  Effects of microwave reaction time on the DS and reaction efficiency of SSE

    图  微波功率对取代度及反应效率的影响

    Figure  5.  Effect of microwave power on the DS and reaction efficiency of SSE

    图  不同取代度的SSE的颗粒粒径分布图

    Figure  6.  Particle size distribution of SSE with different DS

    图  SSE的核磁氢谱图

    Figure  7.  HNMR spectra of SSE

    图  大米淀粉及SSE的 X-射线衍射图

    Figure  8.  X-ray diffraction patterns of rice starch and SSE

    图  大米淀粉及SSE的三相接触角图

    Figure  9.  Three-phase contact angle diagram of rice starch and SSE

    图  10  SSE用量对Pickering乳液稳定性的影响

    Figure  10.  Effect of SSE addition on the stability of Pickering emulsion

    图  11  油相体积对Pickering乳液稳定性的影响

    Figure  11.  Effect of oil phase volume on the stability of Pickering emulsion

    图  12  SSE的取代度对 Pickering乳液稳定性的影响

    Figure  12.  Effect of DS on the stability of Pickering emulsion

    图  13  SSE的取代度对Pickering乳液粒径的影响

    Figure  13.  Effect of DS on the particle size of Pickering emulsion

    图  14  Pickering乳液激光共聚焦显微镜图像(20×)

    Figure  14.  Laser confocal microscope image of Pickering emulsion (20×)

  • [1] 陶钰恬, 王晓波, 王子旭, 等. Pickering乳液的应用进展[J]. 广东化工,2020,47(12):83−84. [TAO Y T, WANG X B, WANG Z X, et al. The progress of application of Pickering emulsion[J]. Guangdong Chemical Industry,2020,47(12):83−84. doi: 10.3969/j.issn.1007-1865.2020.12.034
    [2] 刘倩, 常霞, 单杨, 等. 功能型Pickering乳液研究进展[J]. 中国食品学报,2020,20(11):279−293. [LIU Q, CHANG X, SHAN Y, et al. Progress in functional Pickering emulsions[J]. Journal of Chinese Institute of Food Science and Technology,2020,20(11):279−293.
    [3] LI C, LI Y, SUN P, et al. Pickering emulsions stabilized by native starch granules[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects,2013,431:142−149.
    [4] 李琛, 杨成江. 酯化改性淀粉纳米晶稳定的Pickering乳液及其油脂氧化稳定性[J]. 食品工业科技,2016,37(5):132−136. [LI C, YANG C. Pickering emulsions stabilized by starch nanocrystals modified by esterification and its lipid oxidation stability[J]. Science and Technology of Food Industry,2016,37(5):132−136.
    [5] MAREFATI A, BERTRAND M, SJÖÖ M, et al. Storage and digestion stability of encapsulated curcumin in emulsions based on starch granule Pickering stabilization[J]. Food Hydrocolloids,2017,63:309−320. doi: 10.1016/j.foodhyd.2016.08.043
    [6] AHMADI P, TABIBIAZAR M, ROUFEGARINEJAD L, et al. Development of behenic acid-ethyl cellulose oleogel stabilized Pickering emulsions as low calorie fat replacer[J]. International Journal of Biological Macromolecules,2020,150:974−981. doi: 10.1016/j.ijbiomac.2019.10.205
    [7] 吴楠, 吴颉, 苗春宇, 等. 基于纳米氢氧化铝颗粒的Pickering乳液制备[J]. 过程工程学报,2019,19(6):1220−1227. [WU N, WU J, MIAO C Y, et al. Preparation of Pickering emulsion based on alumina hydroxide nanoparticles[J]. The Chinese Journal of Process Engineering,2019,19(6):1220−1227.
    [8] 王善勇, 项舟洋, 祁海松. 基于天然多糖的绿色表面活性剂[J]. 精细化工,2020,37(10):1965−1976. [WANG S Y, XIANG Z Y, QI H S. Green surfactant based on natural polysaccharides[J]. Fine Chemicals,2020,37(10):1965−1976.
    [9] YI J, GAN C, WEN Z, et al. Development of pea protein and high methoxyl pectin colloidal particles stabilized high internal phase Pickering emulsions for β-carotene protection and delivery[J]. Food Hydrocolloids,2021,113:106497. doi: 10.1016/j.foodhyd.2020.106497
    [10] BINKS B P, LIU W, RODRIGUES J A. Novel stabilization of emulsions via the heteroaggregation of nanoparticles[J]. Langmuir,2008,24(9):4443−4446. doi: 10.1021/la800084d
    [11] GE S, XIONG L, LI M, et al. Characterizations of Pickering emulsions stabilized by starch nanoparticles: Influence of starch variety and particle size[J]. Food Chemistry,2017,234:339−347. doi: 10.1016/j.foodchem.2017.04.150
    [12] RAYNER M, SJÖÖ M, TIMGREN A, et al. Quinoa starch granules as stabilizing particles for production of Pickering emulsions[J]. Faraday Discussions,2012,158(1):139−155.
    [13] 杨传玺, 王小宁, 杨诚中, 等. Pickering乳液稳定性研究进展[J]. 科技导报,2018,36(5):70−76. [YANG C X, WANG X N, YANG C Z, et al. Research progress on the stability of Pickering emulsion[J]. Science and Technology Review,2018,36(5):70−76.
    [14] 焦博, 石爱民, 刘红芝, 等. 基于食品级固体颗粒稳定的Pickering乳液研究进展[J]. 食品科学,2018,39(5):296−303. [JIAO B, SHI A M, LIU H Z, et al. A review on food-grade particle stabilized Pickering emulsions[J]. Food Science,2018,39(5):296−303.
    [15] SAARI H, FUENTES C, SJÖÖ M, et al. Production of starch nanoparticles by dissolution and non-solvent precipitation for use in food-grade Pickering emulsions[J]. Carbohydrate Polymers,2017,157:558−566. doi: 10.1016/j.carbpol.2016.10.003
    [16] WANG X, HUANG L, ZHANG C, et al. Research advances in chemical modifications of starch for hydrophobicity and its applications: A review[J]. Carbohydrate Polymers,2020,240:116292. doi: 10.1016/j.carbpol.2020.116292
    [17] 刘瑜琦, 张明慧, 周婧洁, 等. 硬脂酸聚氧乙烯酯的合成与性能研究[J]. 印染助剂,2022,39(7):10−14. [LIU Y Q, ZHANG M H, ZHOU J J, et al. Synthesis and properties of polyoxyethylene stearate[J]. Textile Auxiliaries,2022,39(7):10−14.
    [18] 孙纯锐. 硬脂酸淀粉酯的制备及其性质研究[D]. 济南: 齐鲁工业大学, 2016

    SUN C R. The Study of preparation and properties of starch stearate [D]. Jinan: Qilu University of Technology, 2016.
    [19] 薛明薇. 微波法制备硬脂酸木薯淀粉酯[J]. 食品安全质量检测学报,2017,8(3):1003−1007. [XUE M W. Preparation of stearic acid cassava starch esters by microwave method[J]. Journal of Food Safety & Quality,2017,8(3):1003−1007.
    [20] 冼学权. 固相法制备长链脂肪酸淀粉酯及其性能研究[D]. 南宁: 广西大学, 2014

    XIAN X Q. Study on the preparation of long chain fatty acid starch esters by solid phase reaction and its properties[D]. Nanning: Guangxi University, 2014.
    [21] TONG F, DENG L, SUN R, et al. Effect of octenyl succinic anhydride starch ester by semi-dry method with vacuum-microwave assistant[J]. International Journal of Biological Macromolecules,2019,141:1128−1136. doi: 10.1016/j.ijbiomac.2019.08.157
    [22] 郭蕉兰. 羧甲基淀粉钠—脂肪酸淀粉酯的制备、性质及应用研究[D]. 无锡: 江南大学, 2014

    GUO J L. Study on preparation, properties and application of carboxymethyl starch-fatty esters[D]. Wuxi: Jiangnan University, 2014
    [23] 陆兰芳, 杨鹏, 王展, 等. 辛烯基琥珀酸小米淀粉酯稳定Pickering乳液[J]. 食品科学,2020,41(22):42−48. [LU L F, YANG P, WANG Z, et al. Stabilization of Pickering emulsions by octenyl succinic anhydride modified millet starch[J]. Food Science,2020,41(22):42−48.
    [24] 宋浩永, 王炜, 黄青丹, 等. 核磁共振氢谱法测定天然酯绝缘油的脂肪酸含量[J]. 绝缘材料,2022,55(2):111−117. [SONG H Y, WANG W, HUANG Q D, et al. Determination of fatty acid content of natural ester insulating oils by 1H-NMR spectroscopy[J]. Insulating Materials,2022,55(2):111−117.
    [25] LI G, XU X, ZHU F. Physicochemical properties of dodecenyl succinic anhydride (DDSA) modified quinoa starch[J]. Food Chemistry,2019,300:125−201.
    [26] YAN C, MCCLEMENTS D J, ZOU L, et al. A stable high internal phase emulsion fabricated with OSA-modified starch: An improvement in β-carotene stability and bioaccessibility[J]. Food & Function,2019,10(9):5446−5460.
    [27] 刘忠博, 耿升, 蒋兆景, 等. 基于环糊精的食品级Pickering乳液构建[J]. 食品科学,2021,42(6):24−30. [LIU Z B, GENG S, JIANG Z J, et al. Fabrication of food-grade Pickering emulsions stabilized by cyclodextrins[J]. Food Science,2021,42(6):24−30.
    [28] 张伟, 赵梦琦, 张海涛. 银杏柠檬酸淀粉酯的制备及加工特性研究[J]. 食品科技,2019,44(5):276−281. [ZHANG W, ZHAO M Q, ZHANG H T. Preparation and processing characteristics of ginkgo citrate starch ester[J]. Food Science and Technology,2019,44(5):276−281. doi: 10.13684/j.cnki.spkj.2019.05.050
    [29] 陈渊, 刘德坤, 谢秋季, 等. 机械活化干法制备硬脂酸木薯淀粉酯[J]. 中国粮油学报,2017,32(4):44−51. [CHEN Y, LIU D K, XIE Q, et al. Preparation for stearate cassava starch esters by mechanical activation-strengthened dry method[J]. Journal of the Chinese Cereals and Oils,2017,32(4):44−51.
    [30] 龚占强. 机械活化木薯淀粉的修饰及其性能的研究[D]. 南宁: 广西大学, 2013

    GONG Z Q. Research on the modification of mechanical activation cassava starch and its properties[D]. Nanning: Guangxi University, 2013.
    [31] 袁璐, 胡婕伦, 殷军艺. 微波辐射对淀粉结构特性的影响及其在淀粉类食品加工中应用的研究进展[J]. 食品工业科技,2020,41(18):330−337. [YUAN L, HU J L, YIN J Y. Progress on the effect of microwave irradiation on structural characteristics of starch and its application in starch derived food processing[J]. Science and Technology of Food Industry,2020,41(18):330−337.
    [32] 韩立鹏, 李琳, 刘国琴, 等. 响应面法优化硬脂酸淀粉酯合成的研究[J]. 河南工业大学学报(自然科学版),2009,30(4):36−40. [HAN L P, LI L, LIU G Q, et al. Study on optimal conditions and properties of potato oxidized starch treated by hydrogen peroxide[J]. Journal of Henan University of Technology (Natural Science Edition),2009,30(4):36−40.
    [33] ZHANG K, CHENG F, ZHANG K, et al. Synthesis of long-chain fatty acid starch esters in aqueous medium and its characterization[J]. European Polymer Journal,2019,119:136−147. doi: 10.1016/j.eurpolymj.2019.07.021
    [34] 唐晓珍, 张慧, 方松, 等. 微波干法羧甲基淀粉工艺优化及结构研究[J]. 粮食与油脂,2018,31(11):18−22. [TANG X Z, ZHANG H, FANG S, et al. Process optimization and structure study of carboxymethyl starch by microwave-drying method[J]. Cereals & Oils,2018,31(11):18−22.
    [35] LIN D, ZHOU W, HE Q, et al. Study on preparation and physicochemical properties of hydroxypropylated starch with different degree of substitution under microwave assistance[J]. International Journal of Biological Macromolecules,2019,125:290−299. doi: 10.1016/j.ijbiomac.2018.12.031
    [36] 李迪. 挤压酯化改性淀粉稳定的Pickering乳液制备及其性质研究[D]. 沈阳: 沈阳师范大学, 2020

    LI D. Preparation and properties of Pickering emulsion stabilized by extruded esterified modified starch[D]. Shenyang: Shenyang Normal University, 2020.
    [37] NAMAZI H, FATHI F, DADKHAH A. Hydrophobically modified starch using long-chain fatty acids for preparation of nanosized starch particles[J]. Scientia Iranica,2011,18(3):439−445.
    [38] 孙梦雯, 莫晓峰, 陈樱, 等. 辛烯基琥珀酸芋头淀粉酯的制备工艺优化及理化性质分析[J]. 食品工业科技,2022,43(20):204−210. [SUN M W, MO X F, et al. Preparation process optimization and physicochemical properties analysis of octenyl succinate taro starch ester[J]. Science and Technology of Food Industry,2022,43(20):204−210.
    [39] 韩墨, 于化鹏, 彭羽, 等. 辛烯基琥珀酸淀粉酯纳米颗粒稳定Pickering乳液及其乳化性分析[J]. 食品研究与开发,2022,43(5):28−34. [HAN M, YU H P, PENG Y, et al. Emulsification analysis of Pickering emulsion stabilized using octenyl succinic starch ester nanoparticles[J]. Food Research and Development,2022,43(5):28−34.
    [40] WANG P P, LUO Z G, TAMER T M. Effects of octenyl succinic anhydride groups distribution on the storage and shear stability of Pickering emulsions formulated by modified rice starch[J]. Carbohydrate Polymers,2020,228:115389. doi: 10.1016/j.carbpol.2019.115389
    [41] 方芳, 杨丹, 文焱炳, 等. 改性纳米纤维素稳定Pickering乳液制备与性能的研究[J]. 中国粮油学报,2022,37(9):186−192. [FANG F, YANG D, WEN Y B, et al. Preparation and properties of Pickering emulsion stabilized by modified cellulose[J]. Journal of the Chinese Cereals and Oils,2022,37(9):186−192.
    [42] XIE Y, LIU H, LI Y, et al. Characterization of Pickering emulsions stabilized by OSA-modified sweet potato residue cellulose: effect of degree of substitute and concentration[J]. Food Hydrocolloids,2020,108:105915. doi: 10.1016/j.foodhyd.2020.105915
    [43] DAMMAK I, JOSÉ DO AMARAL SOBRAL P. Formulation optimization of lecithin-enhanced Pickering emulsions stabilized by chitosan nanoparticles for hesperidin encapsulation[J]. Journal of Food Engineering,2018,229:2−11. doi: 10.1016/j.jfoodeng.2017.11.001
  • 加载中
图(18)
计量
  • 文章访问数:  55
  • HTML全文浏览量:  26
  • PDF下载量:  0
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-09-27
  • 刊出日期:  2023-05-01

目录

    /

    返回文章
    返回