Effects and mechanism of negative pressure microenvironment on the neogenesis of human umbilical vein endothelial cells
-
摘要:目的 探究负压微环境对人脐静脉血管内皮细胞(HUVEC)新生的影响及其机制。方法 采用实验研究方法。取第3~5代对数生长期HUVEC进行后续实验。取3批细胞,各批次细胞均分为常规培养24 h的正常对照组和单纯负压处理组以及加入17-丙烯胺基-17-去甲氨基格尔德霉素(17-AAG)培养24 h的单纯17-AAG组与17-AAG+负压处理组,另采用自行设计研发的全自动三维细胞梯度负压加载装置对2个负压处理组细胞行持续8 h的间歇负压吸引(负压值为-5.33 kPa,吸引30 s、暂停10 s),第1个批次细胞处理完成后于培养0(即刻)、24、48、72 h,采用细胞计数试剂盒8法检测细胞增殖水平,样本数为6;第2个批次细胞处理完成后进行划痕试验,于划痕后12 h,在倒置相差显微镜下观察细胞迁移情况后计算细胞迁移率,样本数为3;第3个批次细胞处理完成后进行小管形成实验,于培养6 h,在倒置相差显微镜下观察成管情况后计算细胞成管总长度与分支节点数,样本数为3。取细胞,分为正常对照组、单纯负压处理组、17-AAG+负压处理组,同前相应组别进行处理,处理完成后,采用蛋白质印迹法检测细胞中热休克蛋白90(HSP90)、窖蛋白1、内皮型一氧化氮合酶(eNOS)、eNOS磷酸化位点1177蛋白表达并计算eNOS磷酸化位点1177/eNOS比值(样本数为3),采用免疫共沉淀(共沉淀HSP90与窖蛋白1、窖蛋白1与eNOS)与蛋白质印迹法检测各组细胞中窖蛋白1、eNOS的蛋白表达(样本数为3),采用免疫荧光双重染色法评估细胞中HSP90与窖蛋白1、窖蛋白1与eNOS的蛋白共定位情况。通过HADDOCK 2.4蛋白质-蛋白质对接程序对窖蛋白1和eNOS进行分子对接预测。数据分析采用析因设计方差分析、单因素方差分析、LSD法。结果 与正常对照组相比,单纯17-AAG组细胞增殖水平于处理完成后培养24、48、72 h均明显降低(P<0.01),单纯负压处理组细胞增殖水平于处理完成后培养24、48、72 h均明显升高(P<0.01);与单纯17-AAG组相比,17-AAG+负压处理组细胞增殖水平于处理完成后培养48、72 h均明显升高(P<0.05或P<0.01);与单纯负压处理组相比,17-AAG+负压处理组细胞增殖水平于处理完成后培养24、48、72 h均明显降低(P<0.01)。划痕后12 h,与正常对照组的(39.9±2.7)%相比,单纯17-AAG组细胞迁移率明显降低[(10.7±2.7)%,P<0.01],单纯负压处理组细胞迁移率明显升高[(61.9±2.4)%,P<0.01];与单纯17-AAG组相比,17-AAG+负压处理组细胞迁移率明显升高[(37.7±3.7)%,P<0.01];与单纯负压处理组相比,17-AAG+负压处理组细胞迁移率明显降低(P<0.01)。处理完成后培养6 h,与正常对照组相比,单纯17-AAG组细胞成管总长度明显缩短(P<0.05)且分支节点数明显减少(P<0.05),单纯负压处理组细胞成管总长度明显延长(P<0.01)且分支节点数明显增加(P<0.01);与单纯17-AAG组相比,17-AAG+负压处理组细胞成管分支节点数明显增加(P<0.05);与单纯负压处理组相比,17-AAG+负压处理组细胞成管总长度明显缩短(P<0.01)且分支节点数明显减少(P<0.01)。蛋白质印迹法检测显示,处理完成后,3组细胞中eNOS、窖蛋白1蛋白表达总体比较,差异均无统计学意义(P>0.05);单纯负压处理组细胞中HSP90蛋白表达与eNOS磷酸化位点1177/eNOS比值均明显高于正常对照组(P<0.01),17-AAG+负压处理组细胞中HSP90蛋白表达与eNOS磷酸化位点1177/eNOS比值均明显低于单纯负压处理组(P<0.01)。处理完成后免疫共沉淀与蛋白质印迹法检测显示,与正常对照组相比,单纯负压处理组细胞中窖蛋白1蛋白表达明显升高(P<0.01),eNOS蛋白表达明显降低(P<0.05);与单纯负压处理组相比,17-AAG+负压处理组处理完成后细胞中窖蛋白1蛋白表达明显降低(P<0.01),eNOS蛋白表达明显升高(P<0.01)。处理完成后,与正常对照组相比,单纯负压处理组细胞中HSP90与窖蛋白1的蛋白共定位明显增多,窖蛋白1与eNOS的蛋白共定位明显减少;与单纯负压处理组比,17-AAG+负压处理组细胞中HSP90与窖蛋白1的蛋白共定位明显减少,窖蛋白1与eNOS的蛋白共定位明显增多。分子对接预测提示,窖蛋白1与eNOS相互作用较强,抑制eNOS 1177位点的磷酸化。结论 负压微环境可能通过促进HUVEC中HSP90结合窖蛋白1进而抑制窖蛋白1结合eNOS,以解除窖蛋白1对eNOS 1177位点磷酸化的抑制,从而促进HUVEC增殖、迁移和成管,最终促进HUVEC新生。Abstract:Objective To investigate the effects and mechanism of negative pressure microenvironment on the neogenesis of human umbilical vein endothelial cells (HUVECs).Methods The experimental research methods were adopted. The third to the fifth passage of HUVECs in the logarithmic growth stage were used for the subsequent experiments. Three batches of cells were taken, with each batch of cells being divided into normal control group and negative pressure treatment alone group (both routinely cultured for 24 h), and 17-allylamino-17-demethoxy-geldanamycin (17-AAG) alone group and 17-AAG+negative pressure treatment group (both cultured with 17-AAG for 24 h). In addition, the intermittent negative pressure suction, with the negative pressure value of -5.33 kPa (suction for 30 s, pause for 10 s) was continuously applied for 8 h on cells in the two negative pressure treatment groups using an automatic three-dimensional cell gradient negative pressure loading device designed and developed by ourselves. After the treatment of the first batch of cells, the cell proliferation level was detected by cell counting kit 8 method at 0 (immediately), 24, 48, and 72 h of culture, with the number of samples being 6. After the treatment of the second batch of cells, the scratch experiment was performed. At 12 h after scratching, the cell migration was observed under an inverted phase contrast microscope and the cell migration rate was calculated, with the number of samples being 3. After the treatment of the third batch of cells, the tubule formation experiment was conducted. After 6 h of culture, the tubulogenesis was observed under an inverted phase contrast microscope and the total tubule length and the number of branch nodes of cells were calculated, with the number of samples being 3. The cells were taken and divided into normal control group, negative pressure treatment alone group, and 17-AAG+negative pressure treatment group. The cells were treated the same as in the previous corresponding group. After the treatment, Western blotting was used to detect the protein expressions of heat shock protein 90 (HSP90), caveolin 1, endothelial nitric oxide synthase (eNOS), and eNOS phosphorylation site 1177 in the cells, and the eNOS phosphorylation site 1177/eNOS ratio was calculated, with the number of samples being 3; co-immunoprecipitation (co-precipitating HSP90 and caveolin 1, caveolin 1 and eNOS) and Western blotting were used to detect the protein expressions of caveolin 1 and eNOS in the cells, with the number of samples being 3; the protein co-localization of HSP90 and caveolin 1 and that of caveolin 1 and eNOS in the cells was assessed by immunofluorescence double staining. The molecular docking prediction of caveolin 1 and eNOS was processed by HADDOCK 2.4 protein-protein docking program. Data were statistically analyzed with analysis of variance for factorial design, one-way analysis of variance, and least significant difference method.Results Compared with that in normal control group, the cell proliferation level in 17-AAG alone group was significantly decreased at culture hour of 24, 48, and 72 after the treatment (P<0.01), while the cell proliferation level in negative pressure treatment alone group was significantly increased at culture hour of 24, 48, and 72 after the treatment (P<0.01). Compared with that in 17-AAG alone group, the cell proliferation level in 17-AAG+negative pressure treatment group was significantly increased at culture hour of 48 and 72 after the treatment (P<0.05 or P<0.01). Compared with that in negative pressure treatment alone group, the cell proliferation level in 17-AAG+negative pressure treatment group was significantly decreased at culture hour of 24, 48, and 72 after the treatment (P<0.01). At 12 h after scratching, compared with (39.9±2.7)% in normal control group, the cell migration rate in 17-AAG alone group was significantly decreased ((10.7±2.7)%, P<0.01), while the cell migration rate in negative pressure treatment alone group was significantly increased ((61.9±2.4)%, P<0.01). Compared with those in 17-AAG alone group, the cell migration rate in 17-AAG+negative pressure treatment group was significantly increased ((37.7±3.7)%, P<0.01). Compared with that in negative pressure treatment alone group, the cell migration rate in 17-AAG+negative pressure treatment group was significantly decreased (P<0.01). At culture hour of 6 after the treatment, compared with those in normal control group, the total length of the tube formed by the cells in 17-AAG alone group was significantly shortened (P<0.05) and the number of branch nodes was significantly reduced (P<0.05), while the total length of the tube formed by the cells in negative pressure treatment alone group was significantly prolonged (P<0.01) and the number of branch nodes was dramatically increased (P<0.01). Compared with that in 17-AAG alone group, the number of branch nodes of the tube formed by the cells was significantly increased in 17-AAG+negative pressure treatment group (P<0.05). Compared with those in negative pressure treatment alone group, the total length of the tube formed by the cells in 17-AAG+negative pressure treatment group was significantly shortened (P<0.01) and the number of branch nodes was significantly reduced (P<0.01). Western blotting detection showed that after treatment, the overall comparison of eNOS and caveolin 1 protein expressions among the three groups of cells showed no statistically significant differences (P>0.05). The expression of HSP90 protein and the eNOS phosphorylation site 1177/eNOS ratio in the cells of negative pressure treatment alone group were significantly increased (P<0.01) compared with those in normal control group. Compared with those in negative pressure treatment alone group, the HSP90 protein expression and the eNOS phosphorylation site 1177/eNOS ratio in the cells of 17-AAG+negative pressure treatment group were significantly decreased (P<0.01). Co-immunoprecipitation and Western blotting detection after the treatment showed that compared with those in normal control group, the expression of caveolin 1 protein in the cells of negative pressure treatment alone group was significantly increased (P<0.01), while the protein expression of eNOS was significantly decreased (P<0.05). Compared with those in negative pressure treatment alone group, the expression of caveolin 1 protein in the cells of 17-AAG+negative pressure treatment group was significantly decreased (P<0.01), while the protein expression of eNOS was significantly increased (P<0.01). After the treatment, compared with those in normal control group, the co-localization of HSP90 and caveolin 1 protein in the cells of negative pressure treatment alone group was significantly increased, while the co-localization of caveolin 1 and eNOS protein was significantly decreased. Compared with those in negative pressure treatment alone group, the co-localization of HSP90 and caveolin 1 protein in the cells of 17-AAG+negative pressure treatment group was significantly decreased, while the co-localization of caveolin 1 and eNOS protein was significantly increased. Molecular docking prediction suggested that caveolin 1 interacted strongly with eNOS and inhibited the 1177 site phosphorylation of eNOS.Conclusions The negative pressure microenvironment may inhibit the binding of caveolin 1 to eNOS by promoting the binding of HSP90 to caveolin 1 in HUVECs, so as to relieve the inhibition of 1177 site phosphorylation of eNOS by caveolin 1, thereby promoting the proliferation, migration, and tubulogenesis of HUVECs, and ultimately promoting the neogenesis of HUVECs.
-
6 3组人脐静脉血管内皮细胞处理完成后细胞中HSP90与窖蛋白1的蛋白表达 花青素3-Alexa Fluor 488-4′,6-二脒基-2-苯基吲哚×200,图中标尺为50 μm。6A、6B、6C、6D与6E、6F、6G、6H及6I、6J、6K、6L.分别为正常对照组与单纯负压处理组及17-丙烯胺基-17-去甲氨基格尔德霉素+负压处理组HSP90染色、窖蛋白1染色、细胞核染色、细胞核与HSP90及窖蛋白1染色重叠图片,图6A中HSP90表达少,图6B中窖蛋白1表达明显,图6C中细胞核完整,图6D中HSP90与窖蛋白1的蛋白共定位较少;图6E中HSP90表达较图6A多,图6F中窖蛋白1表达与图6B相近,图6G中细胞核完整,图6H中HSP90与窖蛋白1的蛋白共定位较图6D多;图6I中HSP90表达较图6E少,图6J中窖蛋白1表达与图6F相近,图6K中细胞核完整,图6L中HSP90与窖蛋白1的蛋白共定位较图6H少
注:热休克蛋白90(HSP90)阳性染色为红色,窖蛋白1阳性染色为绿色,细胞核阳性染色为蓝色,蛋白共定位染色为黄色
7 3组人脐静脉血管内皮细胞处理完成后细胞中eNOS与窖蛋白1的蛋白表达 花青素 3-Alexa Fluor 488-4′,6-二脒基-2-苯基吲哚×200,图中标尺为50 μm。7A、7B、7C、7D与7E、7F、7G、7H及7I、7J、7K、7L.分别为正常对照组与单纯负压处理组及17-丙烯胺基-17-去甲氨基格尔德霉素+负压处理组eNOS染色、窖蛋白1染色、细胞核染色、细胞核与eNOS及窖蛋白1染色重叠图片,图7A中eNOS表达明显,图7B中窖蛋白1表达明显,图7C中细胞核完整,图7D中eNOS和窖蛋白1的蛋白共定位多;图7E中eNOS表达较图7A减少,图7F中窖蛋白1表达较图7B减少,图7G中细胞核完整,图7H中eNOS和窖蛋白1的蛋白共定位较图7D减少;图7I中eNOS表达较图7E增多,图7J中窖蛋白1表达较图7F增多,图7K中细胞核完整,图7L中eNOS和窖蛋白1的蛋白共定位较图7H增多
注:内皮型一氧化氮合酶(eNOS)阳性染色为红色,窖蛋白1阳性染色为绿色,细胞核阳性染色为蓝色,蛋白共定位染色为黄色
表1 4组人脐静脉血管内皮细胞处理完成后培养各时间点增殖水平比较(
) 组别 样本数 0 h(即刻) 24 h 48 h 72 h 正常对照组 6 0.251±0.032 0.401±0.051 0.512±0.072 0.902±0.081 单纯17-AAG组 6 0.222±0.031 0.332±0.031 0.393±0.043 0.713±0.040 单纯负压处理组 6 0.243±0.022 0.513±0.033 0.932±0.041 1.402±0.052 17-AAG+负压处理组 6 0.252±0.032 0.362±0.042 0.561±0.073 0.802±0.073 F值 0.97 25.35 104.15 141.74 P值 0.428 <0.001 <0.001 <0.001 P1值 — 0.006 <0.001 <0.001 P2值 — <0.001 <0.001 <0.001 P3值 — 0.214 <0.001 0.019 P4值 — <0.001 <0.001 <0.001 注:处理因素主效应,F=243.98,P<0.001;时间因素主效应,F=963.65,P<0.001;两者交互作用,F=50.10,P<0.001;F值、P值为4组间各时间点总体比较所得;P1值为单纯17-丙烯胺基-17-去甲氨基格尔德霉素(17-AAG)组与正常对照组各时间点比较所得,P2值为单纯负压处理组与正常对照组各时间点比较所得,P3值为17-AAG+负压处理组与单纯17-AAG组各时间点比较所得,P4值为17-AAG+负压处理组与单纯负压处理组各时间点比较所得;“—”表示无此项 表2 4组人脐静脉血管内皮细胞处理完成后培养6 h成管情况比较(
) 组别 样本数 成管总长度(μm) 分支节点数(个) 正常对照组 3 14 310±1 750 360±55 单纯17-AAG组 3 10 680±1 240 258±46 单纯负压处理组 3 20 670±1 640 660±66 17-AAG+负压处理组 3 13 310±1 560 383±27 F值 22.07 44.63 P值 <0.001 <0.001 P1值 0.022 0.040 P2值 <0.001 <0.001 P3值 0.073 0.017 P4值 <0.001 <0.001 注:F值、P值为4组间各指标总体比较所得;P1值为单纯17-丙烯胺基-17-去甲氨基格尔德霉素(17-AAG)组与正常对照组各指标比较所得,P2值为单纯负压处理组与正常对照组各指标比较所得,P3值为17-AAG+负压处理组与单纯17-AAG组各指标比较所得,P4值为17-AAG+负压处理组与单纯负压处理组各指标比较所得 表3 3组人脐静脉血管内皮细胞处理完成后细胞中eNOS磷酸化位点1177/eNOS比值与血管新生相关蛋白相对表达量比较(
) 组别 样本数 eNOS磷酸化位点1177/eNOS比值 eNOS HSP90 窖蛋白1 正常对照组 3 0.531±0.032 1.03±0.11 0.362±0.051 1.08±0.09 单纯负压处理组 3 0.882±0.022 1.03±0.05 0.721±0.043 1.10±0.08 17-AAG+负压处理组 3 0.501±0.041 1.01±0.03 0.503±0.022 1.06±0.10 F值 113.00 0.08 64.21 0.11 P值 <0.001 0.920 <0.001 0.850 P1值 <0.001 — <0.001 — P2值 <0.001 — <0.001 — 注:F值、P值为3组间各指标总体比较所得;eNOS为内皮型一氧化氮合酶,HSP90为热休克蛋白90;P1值为单纯负压处理组与正常对照组各指标比较所得,P2值为17-丙烯胺基-17-去甲氨基格尔德霉素(17-AAG)+负压处理组与单纯负压处理组各指标比较所得;“—”表示无此项 表4 3组人脐静脉血管内皮细胞处理完成后采用免疫共沉淀与蛋白质印迹法检测细胞中窖蛋白1及eNOS蛋白相对表达量比较(
) 组别 样本数 窖蛋白1 eNOS 正常对照组 3 1.00±0.10 1.00±0.12 单纯负压处理组 3 1.51±0.08 0.58±0.10 17-AAG+负压处理组 3 0.48±0.05 2.02±0.38 F值 127.12 29.16 P值 <0.001 <0.001 P1值 0.002 0.012 P2值 <0.001 <0.001 注:eNOS为内皮型一氧化氮合酶;F值、P值为3组间各指标总体比较所得;P1值为单纯负压处理组与正常对照组各指标比较所得,P2值为17-丙烯胺基-17-去甲氨基格尔德霉素(17-AAG)+负压处理组与单纯负压处理组各指标比较所得 脱细胞真皮基质(ADM) 重症监护病房(ICU) 动脉血氧分压(PaO2) 丙氨酸转氨酶(ALT) 白细胞介素(IL) 磷酸盐缓冲液(PBS) 急性呼吸窘迫综合征(ARDS) 角质形成细胞(KC) 反转录-聚合酶链反应(RT-PCR) 天冬氨酸转氨酶(AST) 半数致死烧伤面积(LA50) 全身炎症反应综合征(SIRS) 集落形成单位(CFU) 内毒素/脂多糖(LPS) 超氧化物歧化酶(SOD) 细胞外基质(ECM) 丝裂原活化蛋白激酶(MAPK) 动脉血氧饱和度(SaO2) 表皮生长因子(EGF) 最低抑菌浓度(MIC) 体表总面积(TBSA) 酶联免疫吸附测定(ELISA) 多器官功能障碍综合征(MODS) 转化生长因子(TGF) 成纤维细胞(Fb) 多器官功能衰竭(MOF) 辅助性T淋巴细胞(Th) 成纤维细胞生长因子(FGF) 一氧化氮合酶(NOS) 肿瘤坏死因子(TNF) 3-磷酸甘油醛脱氢酶(GAPDH) 负压伤口疗法(NPWT) 血管内皮生长因子(VEGF) 苏木精-伊红(HE) 动脉血二氧化碳分压(PaCO2) 负压封闭引流(VSD) -
[1] 谭谦,徐晔.慢性创面治疗的理论和策略[J].中华烧伤杂志,2020,36(9):798-802.DOI: 10.3760/cma.j.cn501120-20200728-00361. [2] 魏在荣,黄广涛.慢性创面的治疗进展及创面外科整合治疗模式探讨[J].中华烧伤杂志,2019,35(11):824-827.DOI: 10.3760/cma.j.issn.1009-2587.2019.11.012. [3] WeiP,ZhongC,YangX,et al.Exosomes derived from human amniotic epithelial cells accelerate diabetic wound healing via PI3K-AKT-mTOR-mediated promotion in angiogenesis and fibroblast function[J/OL].Burns Trauma,2020,8:tkaa020 [2022-01-19]. https://pubmed.ncbi.nlm.nih.gov/32923490/. DOI: 10.1093/burnst/tkaa020. [4] SorgH,TilkornDJ,HagerS,et al.Skin wound healing: an update on the current knowledge and concepts[J].Eur Surg Res,2017,58(1/2):81-94.DOI: 10.1159/000454919. [5] PowersJG,HighamC,BroussardK,et al.Wound healing and treating wounds: chronic wound care and management[J].J Am Acad Dermatol,2016,74(4):607-625; quiz 625-626.DOI: 10.1016/j.jaad.2015.08.070. [6] TonnesenMG,FengX,ClarkRA.Angiogenesis in wound healing[J].J Investig Dermatol Symp Proc,2000,5(1):40-46.DOI: 10.1046/j.1087-0024.2000.00014.x. [7] 刘文剑,刘德伍.间充质干细胞来源细胞外囊泡促进糖尿病溃疡血管生成的研究进展[J].中华烧伤与创面修复杂志,2022,38(4):393-399.DOI: 10.3760/cma.j.cn501120-20201207-00520. [8] PulkkinenHH,KiemaM,LappalainenJP,et al.BMP6/TAZ-Hippo signaling modulates angiogenesis and endothelial cell response to VEGF[J].Angiogenesis,2021,24(1):129-144.DOI: 10.1007/s10456-020-09748-4. [9] MaQ,ReiterRJ,ChenY.Role of melatonin in controlling angiogenesis under physiological and pathological conditions[J].Angiogenesis,2020,23(2):91-104.DOI: 10.1007/s10456-019-09689-7. [10] GlassGE,MurphyGF,EsmaeiliA,et al.Systematic review of molecular mechanism of action of negative-pressure wound therapy[J].Br J Surg,2014,101(13):1627-1636.DOI: 10.1002/bjs.9636. [11] 吕国忠,杨敏烈.规范应用负压伤口疗法提高创面修复水平[J].中华烧伤杂志,2020,36(7):523-527.DOI: 10.3760/cma.j.cn501120-20200522-00280. [12] BondonnoCP,CroftKD,HodgsonJM.Dietary nitrate, nitric oxide, and cardiovascular health[J].Crit Rev Food Sci Nutr,2016,56(12):2036-2052.DOI: 10.1080/10408398.2013.811212. [13] FarahC,KleindienstA,BoleaG,et al.Exercise-induced cardioprotection: a role for eNOS uncoupling and NO metabolites[J].Basic Res Cardiol,2013,108(6):389.DOI: 10.1007/s00395-013-0389-2. [14] TaipaleM,JaroszDF,LindquistS.HSP90 at the hub of protein homeostasis: emerging mechanistic insights[J].Nat Rev Mol Cell Biol,2010,11(7):515-528.DOI: 10.1038/nrm2918. [15] LinLY,LinCY,SuTC,et al.Angiotensin II-induced apoptosis in human endothelial cells is inhibited by adiponectin through restoration of the association between endothelial nitric oxide synthase and heat shock protein 90[J].FEBS Lett,2004,574(1/2/3):106-110.DOI: 10.1016/j.febslet.2004.08.012. [16] PatniN,GargA.Congenital generalized lipodystrophies--new insights into metabolic dysfunction[J].Nat Rev Endocrinol,2015,11(9):522-534.DOI: 10.1038/nrendo.2015.123. [17] ChouPR,WuSH,HsiehMC,et al.Retrospective study on the clinical superiority of the vacuum-assisted closure system with a silicon-based dressing over the conventional tie-over bolster technique in skin graft fixation[J].Medicina (Kaunas),2019,55(12):781.DOI: 10.3390/medicina55120781. [18] TangJ,ChengB,ZhuJ,et al.A topical negative-pressure technique with skin flap transplantation to repair lower-limb wounds with bone exposure[J].Int J Low Extrem Wounds,2012,11(4):299-303.DOI: 10.1177/1534734612463697. [19] 黄振,王朋,潘珍乙,等.聚乙烯醇和聚氨酯负压材料在Ⅲ度烧伤切痂创面应用的前瞻性随机对照试验[J].中华烧伤杂志,2020,36(9):813-820.DOI: 10.3760/cma.j.cn501120-20191225-00472. [20] ZeidermanMR,PuLLQ.Contemporary approach to soft-tissue reconstruction of the lower extremity after trauma[J/OL].Burns Trauma,2021,9:tkab024[2022-01-19]. https://pubmed.ncbi.nlm.nih.gov/34345630/. DOI: 10.1093/burnst/tkab024. [21] RenSY,LiuYS,ZhuGJ,et al.Strategies and challenges in the treatment of chronic venous leg ulcers[J].World J Clin Cases,2020,8(21):5070-5085.DOI: 10.12998/wjcc.v8.i21.5070. [22] 杨敏烈,周小金,朱宇刚,等.不同模式持续负压伤口疗法对下肢静脉性溃疡创面的临床疗效及其影响因素前瞻性随机对照研究[J].中华烧伤杂志,2020,36(12):1149-1158.DOI: 10.3760/cma.j.cn501120-20200316-00173. [23] JiS,LiuX,HuangJ,et al.Consensus on the application of negative pressure wound therapy of diabetic foot wounds[J/OL].Burns Trauma,2021,9:tkab018[2022-01-19].https://pubmed.ncbi.nlm.nih.gov/34212064/.DOI: 10.1093/burnst/tkab018. [24] WynnM,FreemanS.The efficacy of negative pressure wound therapy for diabetic foot ulcers: a systematised review[J].J Tissue Viability,2019,28(3):152-160.DOI: 10.1016/j.jtv.2019.04.001. [25] BhattacharyaS,MishraRK.Pressure ulcers: current understanding and newer modalities of treatment[J].Indian J Plast Surg,2015,48(1):4-16.DOI: 10.4103/0970-0358.155260. [26] 王雪欣,相阳,孟尧,等.负压伤口疗法治疗不同腹部手术后切口愈合不良的临床效果[J].中华烧伤杂志,2021,37(11):1054-1060.DOI: 10.3760/cma.j.cn501120-20210518-00194. [27] SchopfFH,BieblMM,BuchnerJ.The HSP90 chaperone machinery[J].Nat Rev Mol Cell Biol,2017,18(6):345-360.DOI: 10.1038/nrm.2017.20. [28] GrattonJP,FontanaJ,O'ConnorDS,et al.Reconstitution of an endothelial nitric-oxide synthase (eNOS), hsp90, and caveolin-1 complex in vitro. Evidence that hsp90 facilitates calmodulin stimulated displacement of eNOS from caveolin-1[J].J Biol Chem,2000,275(29):22268-22272.DOI: 10.1074/jbc.M001644200. [29] FörstermannU,SessaWC.Nitric oxide synthases: regulation and function[J].Eur Heart J,2012,33(7):829-837, 837a-837d.DOI: 10.1093/eurheartj/ehr304. [30] ZhangJX,QuXL,ChuP,et al.Low shear stress induces vascular eNOS uncoupling via autophagy-mediated eNOS phosphorylation[J].Biochim Biophys Acta Mol Cell Res,2018,1865(5):709-720.DOI: 10.1016/j.bbamcr.2018.02.005. [31] DeckerB,PumigliaK.mTORc1 activity is necessary and sufficient for phosphorylation of eNOSS1177[J].Physiol Rep,2018,6(12):e13733.DOI: 10.14814/phy2.13733. [32] CheriyanVT,AlfaidiM,JorgensenAN,et al.Neurogranin regulates eNOS function and endothelial activation[J].Redox Biol,2020,34:101487.DOI: 10.1016/j.redox.2020.101487. [33] FlemingI.Molecular mechanisms underlying the activation of eNOS[J].Pflugers Arch,2010,459(6):793-806.DOI: 10.1007/s00424-009-0767-7. [34] UrbichC,ReissnerA,ChavakisE,et al.Dephosphorylation of endothelial nitric oxide synthase contributes to the anti-angiogenic effects of endostatin[J].FASEB J,2002,16(7):706-708.DOI: 10.1096/fj.01-0637fje. [35] BoscherC,NabiIR.Caveolin-1: role in cell signaling[J].Adv Exp Med Biol,2012,729:29-50.DOI: 10.1007/978-1-4614-1222-9_3.