Issue 6
Jul 2022
Turn off MathJax
Article Contents
Tian YF,Liu Y.Research advances on functional training robots in burn rehabilitation[J].Chin J Burns Wounds,2022,38(6):580-584.DOI: 10.3760/cma.j.cn501120-20210416-00131.
Citation: Tian YF,Liu Y.Research advances on functional training robots in burn rehabilitation[J].Chin J Burns Wounds,2022,38(6):580-584.DOI: 10.3760/cma.j.cn501120-20210416-00131.

Research advances on functional training robots in burn rehabilitation

doi: 10.3760/cma.j.cn501120-20210416-00131
Funds:

Key Program of National Natural Science Foundation of China BWS11CD61

More Information
  • Corresponding author: Liu Yi, Email: liuyi196402@163.com
  • Received Date: 16 Apr 2021
    Available Online: 12 Aug 2022
  • Issue Publish Date: 20 Jun 2022
  • Patients with deep burns are prone to suffer cicatrix hyperplasia or contracture, leading to problems including dysfunction in limbs, which impacts patients' life quality and makes it difficult for them to return to society. Thereby, the rehabilitation treatment after deep burns is particularly important. Currently, exercise therapy plays an important role in burn rehabilitation, which is mainly based on therapies such as continuous manual assistance training and manual stretching practice to provide patients with physical exercise to limbs and to correct the functional dysfunction of limbs in patients. With the continuous progress in technology, functional training robots have been developed to meet the needs. The emergence of functional training robots saves manpower and provides patients refined and standardized functional exercise treatment. From the aspects of production technology and multi-technology integration, this paper mainly introduces the recent innovation and development of functional training robots and the advantages of the application of functional training robots in the field of burn rehabilitation.

     

  • loading
  • [1]
    TanJ , ChenJ , ZhouJ , et al. Joint contractures in severe burn patients with early rehabilitation intervention in one of the largest burn intensive care unit in China: a descriptive analysis[J/OL].Burns Trauma, 2019,7:1-10[2022-05-19]. https://pubmed.ncbi.nlm.nih.gov/31139664/. DOI: 10.1186/s41038-019-0151-6.
    [2]
    励建安. 人机共融,天人合一——关于康复机器人应用与发展的思考[J]. 中国康复医学杂志,2020, 35(8): 897-899. DOI: 10.3969/j.issn.1001-1242.2020.08.001.
    [3]
    SchieffelersDR,van BredaE,GebruersN,et al.Status of adult inpatient burn rehabilitation in Europe: are we neglecting metabolic outcomes?[J/OL].Burns Trauma,2021,9:tkaa039 [2022-05-19].https://pubmed.ncbi.nlm.nih.gov/33709001/.DOI: 10.1093/burnst/tkaa039.
    [4]
    ShahidT,GouwandaD,NurzamanSG,et al.Moving toward soft robotics: a decade review of the design of hand exoskeletons[J].Biomimetics (Basel),2018,3(3):17.DOI: 10.3390/biomimetics3030017.
    [5]
    Haghshenas-JaryaniM,PattersonRM,BugnariuN,et al.A pilot study on the design and validation of a hybrid exoskeleton robotic device for hand rehabilitation[J].J Hand Ther,2020,33(2):198-208.DOI: 10.1016/j.jht.2020.03.024.
    [6]
    ShiotaK, KokubuS, TarvainenTVJ, et al. Enhanced Kapandji test evaluation of a soft robotic thumb rehabilitation device by developing a fiber-reinforced elastomer-actuator based 5-digit assist system[J]. Robotics and Autonomous Systems, 2019, 111:20-30. DOI: 10.1016/j.robot.2018.09.007.
    [7]
    RoseCG, O'MalleyMK. Hybrid rigid-soft hand exoskeleton to assist functional dexterity[J]. IEEE Robotics and Automation Letters, 2019, 4(1):73-80. DOI: 10.1109/LRA.2018.2878931.
    [8]
    SuzumoriK,FaudziAA. Trends in hydraulic actuators and components in legged and tough robots: a review[J]. Advanced Robotics, 2018,32(9):1-19. DOI: 10.1080/01691864.2018.1455606.
    [9]
    MaX,YuanR, FangS. The system study of pneumatic exoskeleton rehabilitation manipulator[J]. J Eng, 2019, 2019(13):181-185.DOI: 10.1049/joe.2018.9005.
    [10]
    HoTY, ChenYJ, ChenPH. The design and implementation of a motor drive for foot rehabilitation[J]. Computers & Electrical Engineering, 2016,56:795-806. DOI: 10.1016/j.compeleceng.2016.07.017.
    [11]
    KalitaB,DwivedySK. Nonlinear dynamics of a parametrically excited pneumatic artificial muscle (PAM) actuator with simultaneous resonance condition[J]. Mechanism and Machine Theory, 2019, 135:281-297. DOI: 10.1016/j.mechmachtheory.2019.01.031.
    [12]
    DasS,KishishitaY, TsujiT, et al. Forcehand glove: a wearable force-feedback glove with pneumatic artificial muscles (PAMs)[J]. IEEE Robotics & Automation Letters, 2018, 3(3):2416-2423. DOI: 10.1109/LRA.2018.2813403.
    [13]
    GaoF, LiuYN, LiaoWH. Optimal design of a magnetorheological damper used in smart prosthetic knees[J]. Smart Materials and Structures, 2017, 26(3):035034.DOI: 10.1088/1361-665X/aa5494.
    [14]
    LiuQ, ZuoJ, ZhuC, et al. Design and control of soft rehabilitation robots actuated by pneumatic muscles: state of the art[J]. Future Generation Computer Systems, 2020, 113:620-634. DOI: 10.1016/j.future.2020.06.046.
    [15]
    ProiettiT,CrocherV,Roby-BramiA,et al.Upper-limb robotic exoskeletons for neurorehabilitation: a review on control strategies[J].IEEE Rev Biomed Eng,2016,9:4-14.DOI: 10.1109/RBME.2016.2552201.
    [16]
    WashabaughEP,TreadwayE,GillespieRB,et al.Self-powered robots to reduce motor slacking during upper-extremity rehabilitation: a proof of concept study[J].Restor Neurol Neurosci,2018,36(6):693-708.DOI: 10.3233/RNN-180830.
    [17]
    GrosuV,GrosuS,VanderborghtB,et al.Multi-axis force sensor for human-robot interaction sensing in a rehabilitation robotic device[J].Sensors (Basel),2017,17(6):1294.DOI: 10.3390/s17061294.
    [18]
    MancisidorA,ZubizarretaA,CabanesI,et al.Virtual sensors for advanced controllers in rehabilitation robotics[J].Sensors (Basel),2018,18(3) :785. DOI: 10.3390/s18030785.
    [19]
    ScapinS,Echevarría-GuaniloME,Boeira Fuculo JuniorPR,et al.Virtual reality in the treatment of burn patients: a systematic review[J].Burns,2018,44(6):1403-1416.DOI: 10.1016/j.burns.2017.11.002.
    [20]
    EmmelkampP,MeyerbrökerK,MorinaN.Virtual reality therapy in social anxiety disorder[J].Curr Psychiatry Rep,2020,22(7):32.DOI: 10.1007/s11920-020-01156-1.
    [21]
    SchieffelersDR, van BredaE, GebruersN, et al. Data from Campus Bio-Medico University update knowledge in telerehabilitation (virtual reality, augmented reality, gamification, and telerehabilitation: psychological impact on orthopedic patients' rehabilitation[J/OL].Burns Trauma, 2021,9:tkaa039[2022-05-19]. https://pubmed.ncbi.nlm.nih.gov/33709001/. DOI: 10.1093/burnst/tkaa039.
    [22]
    LuoH,CaoC,ZhongJ,et al.Adjunctive virtual reality for procedural pain management of burn patients during dressing change or physical therapy: a systematic review and meta-analysis of randomized controlled trials[J].Wound Repair Regen,2019,27(1):90-101.DOI: 10.1111/wrr.1.
    [23]
    WielandLS.Psychological interventions for needle-related procedural pain and distress in children and adolescents: summary of a cochrane review[J].Explore (NY),2019,15(1):74-75.DOI: 10.1016/j.explore.2018.10.014.
    [24]
    GarrettBM,TaoG,TavernerT,et al.Patients perceptions of virtual reality therapy in the management of chronic cancer pain[J].Heliyon,2020,6(5):e03916.DOI: 10.1016/j.heliyon.2020.e03916.
    [25]
    LindnerP,DagööJ,HamiltonW,et al.Virtual reality exposure therapy for public speaking anxiety in routine care: a single-subject effectiveness trial[J].Cogn Behav Ther,2021,50(1):67-87.DOI: 10.1080/16506073.2020.1795240.
    [26]
    KhadraC,BallardA,PaquinD,et al.Effects of a projector-based hybrid virtual reality on pain in young children with burn injuries during hydrotherapy sessions: a within-subject randomized crossover trial[J].Burns,2020,46(7):1571-1584.DOI: 10.1016/j.burns.2020.04.006.
    [27]
    RoseT,NamCS,ChenKB.Immersion of virtual reality for rehabilitation - review[J].Appl Ergon,2018,69:153-161.DOI: 10.1016/j.apergo.2018.01.009.
    [28]
    ParryI,CarbullidoC,KawadaJ,et al.Keeping up with video game technology: objective analysis of Xbox Kinect™ and PlayStation 3 Move™ for use in burn rehabilitation[J].Burns,2014,40(5):852- 859.DOI: 10.1016/j.burns.2013.11.005.
    [29]
    SamhanAF,AbdelhalimNM,ElnaggarRK.Effects of interactive robot-enhanced hand rehabilitation in treatment of paediatric hand-burns: a randomized, controlled trial with 3-months follow-up[J].Burns,2020,46(6):1347-1355.DOI: 10.1016/j.burns.2020.01.015.
    [30]
    PriceK,MoiemenN,NiceL,et al.Patient experience of scar assessment and the use of scar assessment tools during burns rehabilitation: a qualitative study[J/OL].Burns Trauma,2021,9:tkab005[2022-05-19]. https://pubmed.ncbi.nlm.nih.gov/34212058/. DOI: 10.1093/burnst/tkab005.
    [31]
    SmithN, HotzeR, TateAR. A novel rehabilitation program using neuromuscular electrical stimulation (NMES) and taping for shoulder pain in swimmers: a protocol and case example[J]. Int J Sports Phys Ther, 2021,16(2):579-590. DOI: 10.26603/001c.21234.
    [32]
    RongW,LiW,PangM,et al.A Neuromuscular Electrical Stimulation (NMES) and robot hybrid system for multi-joint coordinated upper limb rehabilitation after stroke[J].J Neuroeng Rehabil,2017,14(1):34.DOI: 10.1186/s12984-017-0245-y.
    [33]
    SalazarAP,PagnussatAS,PereiraGA,et al.Neuromuscular electrical stimulation to improve gross motor function in children with cerebral palsy: a meta-analysis[J].Braz J Phys Ther,2019,23(5):378-386.DOI: 10.1016/j.bjpt.2019.01.006.
    [34]
    HuangY, NamC, LiW, et al. A comparison of the rehabilitation effectiveness of neuromuscular electrical stimulation robotic hand training and pure robotic hand training after stroke: a randomized controlled trial[J]. Biomedical Signal Processing and Control,2020, 56: 101723. DOI: 10.1016/j.bspc.2019.101723.
    [35]
    龙艺,贾赤宇.现代烧伤康复应用技术进展[J].中华烧伤杂志,2012,28(5):370-373.DOI: 10.3760/cma.j.issn.1009-2587.2012.05.015.
  • 加载中

Catalog

    Tables(1)

    Article Metrics

    Article views(99) PDF downloads(2) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return