Citation: | Li F,Cai Y,Deng CL.Research advances on mesenchymal stem cells and their derivatives in the treatment of acne scars[J].Chin J Burns Wounds,2022,38(6):595-600.DOI: 10.3760/cma.j.cn501120-20210510-00177. |
[1] |
TaubAF. The treatment of acne scars, a 30-year journey[J]. Am J Clin Dermatol, 2019, 20(5):683-690.DOI: 10.1007/s40257-019-00451-9.
|
[2] |
XuY, DengY. Ablative fractional CO2 laser for facial atrophic acne scars[J]. Facial Plast Surg, 2018, 34(2):205-219.DOI: 10.1055/s-0037-1606096.
|
[3] |
ZhangC, ChenY, FuX. Sweat gland regeneration after burn injury: is stem cell therapy a new hope?[J]. Cytotherapy, 2015, 17(5):526-535.DOI: 10.1016/j.jcyt.2014.10.016.
|
[4] |
MengZ, FengG, HuX, et al. SDF factor-1α promotes the migration, proliferation, and osteogenic differentiation of mouse bone marrow mesenchymal stem cells through the Wnt/β-catenin pathway[J]. Stem Cells Dev, 2021,30(2):106-117. DOI: 10.1089/scd.2020.0165.
|
[5] |
MatzelleMM, ShawAT, BaumR, et al. Inflammation in arthritis induces expression of BMP3, an inhibitor of bone formation[J]. Scand J Rheumatol, 2016,45(5):379-383. DOI: 10.3109/03009742.2015.1126347.
|
[6] |
苗丽, 张晨亮, 李欣, 等. 间充质干细胞成骨和成脂分化调控机制研究[J].药物评价研究,2020,43(12):2363-2371. DOI: 10.7501/j.issn.1674-6376.2020.12.001.
|
[7] |
AnX, MaK, ZhangZ, et al. miR-17, miR-21, and miR-143 enhance adipogenic differentiation from porcine bone marrow-derived mesenchymal stem cells[J]. DNA Cell Biol, 2016,35(8):410-416. DOI: 10.1089/dna.2015.3182.
|
[8] |
DaiZ, JinY, ZhengJ, et al. MiR-217 promotes cell proliferation and osteogenic differentiation of BMSCs by targeting DKK1 in steroid-associated osteonecrosis[J]. Biomed Pharmacother, 2019,109:1112-1119. DOI: 10.1016/j.biopha.2018.10.166.
|
[9] |
SunMH, WangWJ, LiQ, et al. Autologous oxygen release nano bionic scaffold composite miR-106a induced BMSCs enhances osteoblast conversion and promotes bone repair through regulating BMP-2[J]. Eur Rev Med Pharmacol Sci, 2018,22(21):7148-7155. DOI: 10.26355/eurrev_201811_16246.
|
[10] |
HalvorsenJA, SternRS, DalgardF, et al. Suicidal ideation, mental health problems, and social impairment are increased in adolescents with acne: a population-based study[J]. J Invest Dermatol, 2011,131(2):363-370. DOI: 10.1038/jid.2010.264.
|
[11] |
RyuAR, LeeMY. Chlorin e6-mediated photodynamic therapy promotes collagen production and suppresses MMPs expression via modulating AP-1 signaling in P. acnes-stimulated HaCaT cells[J]. Photodiagnosis Photodyn Ther, 2017,20:71-77. DOI: 10.1016/j.pdpdt.2017.08.002.
|
[12] |
LeeWJ, JungHJ, LimHJ, et al. Serial sections of atrophic acne scars help in the interpretation of microscopic findings and the selection of good therapeutic modalities[J]. J Eur Acad Dermatol Venereol, 2013,27(5):643-646. DOI: 10.1111/j.1468-3083.2011.04330.x.
|
[13] |
SatoT, KuriharaH, AkimotoN, et al. Augmentation of gene expression and production of promatrix metalloproteinase 2 by propionibacterium acnes-derived factors in hamster sebocytes and dermal fibroblasts: a possible mechanism for acne scarring[J]. Biol Pharm Bull, 2011,34(2):295-299. DOI: 10.1248/bpb.34.295.
|
[14] |
张莉, 胡志帮. 痤疮炎症的发生机制研究进展[J]. 山东医药, 2018, 58(34):3.DOI: 10.3969/j.issn.1002-266X.2018.34.034.
|
[15] |
AzamM, GhufranH, ButtH, et al. Curcumin preconditioning enhances the efficacy of adipose-derived mesenchymal stem cells to accelerate healing of burn wounds[J/OL]. Burns Trauma, 2021,9:tkab021[2022-02-23].https://pubmed.ncbi.nlm.nih.gov/34514007/.DOI: 10.1093/burnst/tkab021.
|
[16] |
HuP, YangQ, WangQ, et al. Mesenchymal stromal cells-exosomes: a promising cell-free therapeutic tool for wound healing and cutaneous regeneration[J/OL]. Burns Trauma, 2019,7:38[2022-02-23]. https://pubmed.ncbi.nlm.nih.gov/31890717/. DOI: 10.1186/s41038-019-0178-8.
|
[17] |
LiC, WeiS, XuQ, et al. Application of ADSCs and their exosomes in scar prevention[J]. Stem Cell Rev Rep, 2022,18(3):952-967. DOI: 10.1007/s12015-021-10252-5.
|
[18] |
张静, 易阳艳, 阳水发, 等. 脂肪干细胞来源外泌体对人脐静脉血管内皮细胞增殖、迁移及管样分化的影响[J].中国修复重建外科杂志,2018,32(10):1351-1357. DOI: 10.7507/1002-1892.201804016.
|
[19] |
HuL, WangJ, ZhouX, et al. Exosomes derived from human adipose mensenchymal stem cells accelerates cutaneous wound healing via optimizing the characteristics of fibroblasts[J]. Sci Rep, 2016,6:32993. DOI: 10.1038/srep32993.
|
[20] |
KimS, LeeSK, KimH, et al. Exosomes secreted from induced pluripotent stem cell-derived mesenchymal stem cells accelerate skin cell proliferation[J]. Int J Mol Sci, 2018,19(10):3119.DOI: 10.3390/ijms19103119.
|
[21] |
PengH, ZhuangY, HarbeckMC, et al. Serine 1179 phosphorylation of endothelial nitric oxide synthase increases superoxide generation and alters cofactor regulation[J]. PLoS One, 2015,10(11):e0142854. DOI: 10.1371/journal.pone.0142854.
|
[22] |
LozitoTP, TuanRS. Mesenchymal stem cells inhibit both endogenous and exogenous MMPs via secreted TIMPs[J]. J Cell Physiol, 2011,226(2):385-396. DOI: 10.1002/jcp.22344.
|
[23] |
MaJ, YanX, LinY, et al. Hepatocyte growth factor secreted from human adipose-derived stem cells inhibits fibrosis in hypertrophic scar fibroblasts[J]. Curr Mol Med, 2020,20(7):558-571. DOI: 10.2174/1566524020666200106095745.
|
[24] |
昝钦. 兔异体骨髓间充质干细胞抑制增生性瘢痕的实验研究[D]. 遵义:遵义医学院, 2014. |
[25] |
MansillaE, MarinGH, SturlaF, et al. Human mesenchymal stem cells are tolerized by mice and improve skin and spinal cord injuries[J]. Transplant Proc, 2005,37(1):292-294. DOI: 10.1016/j.transproceed.2005.01.070.
|
[26] |
房锋俊. 骨髓间充质干细胞对增生性瘢痕和瘢痕疙瘩成纤维细胞生物学行为影响的研究[D]. 济南:山东大学, 2016. |
[27] |
武艳. 基于骨髓间充质干细胞对微环境的调控作用影响皮肤瘢痕形成的实验研究[D].天津:南开大学, 2013. |
[28] |
HuCH, TsengYW, ChiouCY, et al. Bone marrow concentrate-induced mesenchymal stem cell conditioned medium facilitates wound healing and prevents hypertrophic scar formation in a rabbit ear model[J]. Stem Cell Res Ther, 2019,10(1):275. DOI: 10.1186/s13287-019-1383-x.
|
[29] |
GuC, HuangS, GaoD, et al. Angiogenic effect of mesenchymal stem cells as a therapeutic target for enhancing diabetic wound healing[J]. Int J Low Extrem Wounds, 2014,13(2):88-93. DOI: 10.1177/1534734614534977.
|
[30] |
FranckCL, SenegagliaAC, LeiteLMB, et al. Influence of adipose tissue-derived stem cells on the burn wound healing process[J]. Stem Cells Int, 2019, 2019:2340725.DOI: 10.1155/2019/2340725.
|
[31] |
ZonariA, MartinsTM, PaulaAC, et al. Polyhydroxybutyrate- co-hydroxyvalerate structures loaded with adipose stem cells promote skin healing with reduced scarring[J]. Acta Biomater, 2015,17:170-181. DOI: 10.1016/j.actbio.2015.01.043.
|
[32] |
YuWY, SunW, YuDJ, et al. Adipose-derived stem cells improve neovascularization in ischemic flaps in diabetic mellitus through HIF-1α/VEGF pathway[J]. Eur Rev Med Pharmacol Sci, 2018,22(1):10-16. DOI: 10.26355/eurrev_201801_14094.
|
[33] |
WangX, MaY, GaoZ, et al. Human adipose-derived stem cells inhibit bioactivity of keloid fibroblasts[J]. Stem Cell Res Ther, 2018,9(1):40. DOI: 10.1186/s13287-018-0786-4.
|
[34] |
胡华婷, 王巧稚, 李静婷, 等. 脂肪来源干细胞培养基对瘢痕成纤维细胞增殖及胶原合成的影响[J]. 中国临床药理学杂志, 2020, 36(19): 3091-3094.DOI: 10.13699/j.cnki.1001-6821.2020.19.034.
|
[35] |
ShanX, ChoiJH, KimKJ, et al. Adipose stem cells with conditioned media for treatment of acne vulgaris scar[J]. Tissue Eng Regen Med, 2018,15(1):49-61. DOI: 10.1007/s13770-017-0105-7.
|
[36] |
ZhangQ, LiuLN, YongQ, et al. Intralesional injection of adipose-derived stem cells reduces hypertrophic scarring in a rabbit ear model[J]. Stem Cell Res Ther, 2015,6(1):145. DOI: 10.1186/s13287-015-0133-y.
|
[37] |
GuillénMI, PlatasJ, Pérez Del CazMD, et al. Paracrine anti-inflammatory effects of adipose tissue-derived mesenchymal stem cells in human monocytes[J]. Front Physiol, 2018,9:661. DOI: 10.3389/fphys.2018.00661.
|
[38] |
王江文, 易阳艳, 朱元正, 等. 脂肪干细胞来源外泌体促进糖尿病小鼠创面愈合的实验研究[J].中国修复重建外科杂志,2020,34(1):124-131. DOI: 10.7507/1002-1892.201903058.
|
[39] |
IbrahimZA, EltatawyRA, GhalyNR, et al. Autologus bone marrow stem cells in atrophic acne scars: a pilot study[J]. J Dermatolog Treat, 2015,26(3):260-265. DOI: 10.3109/09546634.2014.946379.
|
[40] |
El-DomyatiM, MoftahNH, NasifGA, et al. Amniotic fluid-derived mesenchymal stem cell products combined with microneedling for acne scars: a split-face clinical, histological, and histometric study[J/OL]. J Cosmet Dermatol, 2019, (2019-06-07)[2021-03-08].https://pubmed.ncbi.nlm.nih.gov/31173459/.DOI:10.1111/jocd.13039.[published online ahead of print].
|
[41] |
Abdel-MaguidEM, AwadSM, HassanYS, et al. Efficacy of stem cell-conditioned medium vs. platelet-rich plasma as an adjuvant to ablative fractional CO2 laser resurfacing for atrophic post-acne scars: a split-face clinical trial[J]. J Dermatolog Treat, 2021, 32(2): 242-249.DOI: 10.1080/09546634.2019.1630701.
|
[42] |
Abou EittaRS, IsmailAA, AbdelmaksoudRA, et al. Evaluation of autologous adipose-derived stem cells vs. fractional carbon dioxide laser in the treatment of post acne scars: a split-face study [J]. Int J Dermatol, 2019, 58(10): 1212-1222.DOI: 10.1111/ijd.14567.
|
[43] |
ZhouBR, XuY, GuoSL, et al. The effect of conditioned media of adipose-derived stem cells on wound healing after ablative fractional carbon dioxide laser resurfacing[J]. Biomed Res Int, 2013, 2013:519126.DOI: 10.1155/2013/519126.
|
[44] |
ZhouBR, ZhangT, Bin JameelAA, et al. The efficacy of conditioned media of adipose-derived stem cells combined with ablative carbon dioxide fractional resurfacing for atrophic acne scars and skin rejuvenation[J]. J Cosmet Laser Ther, 2016, 18(3): 138-148.DOI: 10.3109/14764172.2015.1114638.
|
[45] |
ParkCS, ParkJH, KimCR, et al. Objective analysis of volume restoration in atrophic acne scars and skin pores: a split study using human stem cell-conditioned media[J]. J Dermatolog Treat, 2021, 32(1):73-77.DOI: 10.1080/09546634.2019.1628915.
|
[46] |
AzzamOA, AttaAT, SobhiRM, et al. Fractional CO2 laser treatment vs autologous fat transfer in the treatment of acne scars: a comparative study[J]. J Drugs Dermatol, 2013, 12(1): e7-e13.
|
[47] |
KwonHH, YangSH, LeeJ, et al. Combination treatment with human adipose tissue stem cell-derived exosomes and fractional CO2 laser for acne scars: a 12-week prospective, double-blind, randomized, split-face study[J]. Acta Derm Venereol, 2020, 100(18):adv00310.DOI: 10.2340/00015555-3666.
|
[48] |
DengC, WangL, FengJ, et al. Treatment of human chronic wounds with autologous extracellular matrix/stromal vascular fraction gel: a STROBE-compliant study[J]. Medicine (Baltimore), 2018,97(32):e11667. DOI: 10.1097/MD.0000000000011667.
|
[49] |
YuZ, CaiY, DengM, et al. Fat extract promotes angiogenesis in a murine model of limb ischemia: a novel cell-free therapeutic strategy[J]. Stem Cell Res Ther, 2018,9(1):294. DOI: 10.1186/s13287-018-1014-y.
|
[50] |
CaiY, LiJ, JiaC, et al. Therapeutic applications of adipose cell-free derivatives: a review[J]. Stem Cell Res Ther, 2020,11(1):312. DOI: 10.1186/s13287-020-01831-3.
|