Volume 38 Issue 3
Feb 2022
Turn off MathJax
Article Contents
Z. Lu and Y. Yang, Modeling of the turbulent burning velocity for planar and Bunsen flames over a wide range of conditions, Acta Mech. Sin. 38, 121504 (2022), http://www.w3.org/1999/xlink' xlink:href='https://doi.org/10.1007/s10409-021-09027-3'>https://doi.org/10.1007/s10409-021-09027-3
Citation: Z. Lu and Y. Yang, Modeling of the turbulent burning velocity for planar and Bunsen flames over a wide range of conditions, Acta Mech. Sin. 38, 121504 (2022), http://www.w3.org/1999/xlink" xlink:href="https://doi.org/10.1007/s10409-021-09027-3">https://doi.org/10.1007/s10409-021-09027-3

Modeling of the turbulent burning velocity for planar and Bunsen flames over a wide range of conditions

doi: 10.1007/s10409-021-09027-3
Funds:

National Natural Science Foundation of China 91841302

National Key Research and Development Program of China 2020YFE0204200

Xplore Prize 

More Information
  • Corresponding author: Yang Yue, E-mail address: yyg@pku.edu.cn (Yue Yang)
  • Accepted Date: 24 Nov 2021
  • Available Online: 01 Aug 2022
  • Publish Date: 29 Jan 2022
  • Issue Publish Date: 01 Mar 2022
  • We develop and assess a model of the turbulent burning velocity sT over a wide range of conditions. The aim is to obtain an explicit sT model for turbulent combustion modeling and flame analysis. The model consists of sub models of the stretch factor and the turbulent flame area. The stretch factor characterizes the flame response of turbulence stretch and incorporates detailed chemistry and transport effects with a lookup table of laminar counterflow flames. The flame area model captures the area growth based on Lagrangian statistics of propagating surfaces and considers the effects of turbulence length scales and fuel characteristics. The present model predicts sT via an algebraic expression without free parameters. We assess the model using 490 cases of the direct numerical simulation or experiment reported from various research groups on planar and Bunsen flames over a wide range of conditions, covering fuels from hydrogen to n-dodecane, pressures from 1 to 30 atm, lean and rich mixtures, turbulence intensity ratios from 0.1 to 177.6, and turbulence length ratios from 0.5 to 66.7. Despite the scattering sT data in the literature, the comprehensive comparison shows that the proposed sT model has an overall good agreement over the wide range of conditions, with the averaged modeling error of 28.1%.

     

  • loading
  • [[1]]
    N. Peters. Turbulent Combustion. (Cambridge University Press, Cambridge, 2000).
    [[2]]
    A. N. Lipatnikov, and J. Chomiak, Turbulent flame speed and thickness: Phenomenology, evaluation, and application in multi-dimensional simulations, Prog. Energy Combust. Sci. 28, 1 (2002).
    [[3]]
    J. F. Driscoll, Turbulent premixed combustion: Flamelet structure and its effect on turbulent burning velocities, Prog. Energy Combust. Sci. 34, 91 (2008).
    [[4]]
    J. F. Driscoll, J. H. Chen, A. W. Skiba, C. D. Carter, E. R. Hawkes, and H. Wang, Premixed flames subjected to extreme turbulence: Some questions and recent answers, Prog. Energy Combust. Sci. 76, 100802 (2020).
    [[5]]
    D. You, Y. Huang, and V. Yang, A generalized model of acoustic response of turbulent premixed flame and its application to gas-turbine combustion instability analysis, Combust. Sci. Technol. 177, 1109 (2005).
    [[6]]
    P. Palies, T. Schuller, D. Durox, and S. Candel, Modeling of premixed swirling flames transfer functions, Proc. Combust. Institut. 33, 2967 (2011).
    [[7]]
    Ö. L. Gülder, Turbulent premixed flame propagation models for different combustion regimes, Sympos. (Int.) Combust. 23, 743 (1991).
    [[8]]
    H. Kobayashi, K. Seyama, H. Hagiwara, and Y. Ogami, Burning velocity correlation of methane/air turbulent premixed flames at high pressure and high temperature, Proc. Combust. Instit. 30, 827 (2005).
    [[9]]
    R. K. Cheng, and D. Littlejohn, Laboratory study of premixed H222, J. Eng. Gas Turbines Power 130, (2008).
    [[10]]
    D. Lee, and K. Y. Huh, Validation of analytical expressions for turbulent burning velocity in stagnating and freely propagating turbulent premixed flames, Combust. Flame 159, 1576 (2012).
    [[11]]
    S. Chaudhuri, V. Akkerman, and C. K. Law, Spectral formulation of turbulent flame speed with consideration of hydrodynamic instability, Phys. Rev. E 84, 026322 (2011).
    [[12]]
    D. Bradley, A. K. C. Lau, M. Lawes, and F. T. Smith, Flame stretch rate as a determinant of turbulent burning velocity, Phil. Trans. R. Soc. Lond. A 338, 359 (1992).
    [[13]]
    S. P. R. Muppala, N. K. Aluri, F. Dinkelacker, and A. Leipertz, Development of an algebraic reaction rate closure for the numerical calculation of turbulent premixed methane, ethylene, and propane/air flames for pressures up to 1.0 MPa, Combust. Flame 140, 257 (2005).
    [[14]]
    D. Bradley, M. Lawes, K. Liu, and M. S. Mansour, Measurements and correlations of turbulent burning velocities over wide ranges of fuels and elevated pressures, Proc. Combust. Institut. 34, 1519 (2013).
    [[15]]
    M. T. Nguyen, D. W. Yu, and S. S. Shy, General correlations of high pressure turbulent burning velocities with the consideration of Lewis number effect, Proc. Combust. Institut. 37, 2391 (2019).
    [[16]]
    S. Verma, and A. N. Lipatnikov, Does sensitivity of measured scaling exponents for turbulent burning velocity to flame configuration prove lack of generality of notion of turbulent burning velocity?, Combust. Flame 173, 77 (2016).
    [[17]]
    G. Damköhler, Der einfluss der turbulenz auf die flammengeschwindigkeit in gasgemischen, Z. Elektrochem. Angew. Phys. Chem. 46, 601 626(1940).
    [[18]]
    F. C. Gouldin, An application of fractals to modeling premixed turbulent flames, Combust. Flame 68, 249 (1987).
    [[19]]
    Ö. L. Gülder, Turbulent premixed combustion modelling using fractal geometry, Sympos. (Int.) Combust. 23, 835 (1991).
    [[20]]
    A. R. Kerstein, W. T. Ashurst, and F. A. Williams, Field equation for interface propagation in an unsteady homogeneous flow field, Phys. Rev. A 37, 2728 (1988).
    [[21]]
    V. Yakhot, Propagation velocity of premixed turbulent flames, Combust. Sci. Technol. 60, 191 (1988).
    [[22]]
    P. D. Ronney, and V. Yakhot, Flame broadening effects on premixed turbulent flame speed, Combust. Sci. Technol. 86, 31 (1992).
    [[23]]
    V. L. Zimont, Theory of turbulent combustion of a homogeneous fuel mixture at high reynolds numbers, Combust. Explos. Shock Waves 15, 305 (1979).
    [[24]]
    Ö. L. Gülder, Contribution of small scale turbulence to burning velocity of flamelets in the thin reaction zone regime, Proc. Combust. Instit. 31, 1369 (2007).
    [[25]]
    G. V. Nivarti, R. S. Cant, and S. Hochgreb, Reconciling turbulent burning velocity with flame surface area in small-scale turbulence, J. Fluid Mech. 858, R1 (2019).
    [[26]]
    T. M. Wabel, A. W. Skiba, and J. F. Driscoll, Turbulent burning velocity measurements: Extended to extreme levels of turbulence, Proc. Combust. Instit. 36, 1801 (2017).
    [[27]]
    T. Poinsot, and D. Veynante, Theoretical and Numerical Combustion. 3rd ed (2012).
    [[28]]
    K. N. C. Bray, Studies of the turbulent burning velocity, Proc. R. Soc. Lond. A 431, 315 (1990).
    [[29]]
    P. Venkateswaran, A. Marshall, J. Seitzman, and T. Lieuwen, Scaling turbulent flame speeds of negative Markstein length fuel blends using leading points concepts, Combust. Flame 162, 375 (2015).
    [[30]]
    A. Amato, M. S. Day, R. K. Cheng, J. Bell, D. Dasgupta, and T. Lieuwen, Topology and burning rates of turbulent, lean, H2, Combust. Flame 162, 4553 (2015).
    [[31]]
    S. Lapointe, and G. Blanquart, Fuel and chemistry effects in high Karlovitz premixed turbulent flames, Combust. Flame 167, 294 (2016).
    [[32]]
    B. Savard, S. Lapointe, and A. Teodorczyk, Numerical investigation of the effect of pressure on heat release rate in iso, Proc. Combust. Instit. 36, 3543 (2017).
    [[33]]
    E. Abbasi-Atibeh, and J. M. Bergthorson, The effects of differential diffusion in counter-flow premixed flames with dilution and hydrogen enrichment, Combust. Flame 209, 337 (2019).
    [[34]]
    A. Trouvé, and T. Poinsot, The evolution equation for the flame surface density in turbulent premixed combustion, J. Fluid Mech. 278, 1 (1994).
    [[35]]
    A. J. Aspden, M. S. Day, and J. B. Bell, Three-dimensional direct numerical simulation of turbulent lean premixed methane combustion with detailed kinetics, Combust. Flame 166, 266 (2016).
    [[36]]
    A. J. Aspden, J. B. Bell, M. S. Day, and F. N. Egolfopoulos, Turbulence-flame interactions in lean premixed dodecane flames, Proc. Combust. Instit. 36, 2005 (2017).
    [[37]]
    R. S. Cant, B. Rogg, and K. N. C. Bray, On laminar flamelet modelling of the mean reaction rate in a premixed turbulent flame, Combust. Sci. Technol. 69, 53 (1990).
    [[38]]
    J. You, and Y. Yang, Modelling of the turbulent burning velocity based on Lagrangian statistics of propagating surfaces, J. Fluid Mech. 887, A11 (2020).
    [[39]]
    S. S. Girimaji, and S. B. Pope, Propagating surfaces in isotropic turbulence, J. Fluid Mech. 234, 247 (1992).
    [[40]]
    T. Zheng, J. You, and Y. Yang, Principal curvatures and area ratio of propagating surfaces in isotropic turbulence, Phys. Rev. Fluids 2, 103201 (2017).
    [[41]]
    Z. Lu, and Y. Yang, Modeling pressure effects on the turbulent burning velocity for lean hydrogen/air premixed combustion, Proc. Combust. Instit. 38, 2901 (2021).
    [[42]]
    A. J. Aspden, M. S. Day, and J. B. Bell, Turbulence-flame interactions in lean premixed hydrogen: Transition to the distributed burning regime, J. Fluid Mech. 680, 287 (2011).
    [[43]]
    A. J. Aspden, M. S. Day, and J. B. Bell, Turbulence-chemistry interaction in lean premixed hydrogen combustion, Proc. Combust. Instit. 35, 1321 (2015).
    [[44]]
    S. Zhang, Z. Lu, and Y. Yang, Modeling the displacement speed in the flame surface density method for turbulent premixed flames at high pressures, Phys. Fluids 33, 045118 (2021).
    [[45]]
    Z. Wang, V. Magi, and J. Abraham, turbulent flame speed dependencies in lean methane-air mixtures under engine relevant conditions, Combust. Flame 180, 53 (2017).
    [[46]]
    S. Lapointe, B. Savard, and G. Blanquart, Differential diffusion effects, distributed burning, and local extinctions in high Karlovitz premixed flames, Combust. Flame 162, 3341 (2015).
    [[47]]
    H. Kobayashi, Experimental study of high-pressure turbulent premixed flames, Exp. Therm. Fluid Sci. 26, 375 (2002).
    [[48]]
    R. Fragner, F. Halter, N. Mazellier, C. Chauveau, and I. Gökalp, Investigation of pressure effects on the small scale wrinkling of turbulent premixed Bunsen flames, Proc. Combust. Instit. 35, 1527 (2015).
    [[49]]
    F. T. C. Yuen, and Ö. L. Gülder, Turbulent premixed flame front dynamics and implications for limits of flamelet hypothesis, Proc. Combust. Instit. 34, 1393 (2013).
    [[50]]
    P. Tamadonfar, and Ö. L. Gülder, Flame brush characteristics and burning velocities of premixed turbulent methane/air Bunsen flames, Combust. Flame 161, 3154 (2014).
    [[51]]
    P. Tamadonfar, and Ö. L. Gülder, Effects of mixture composition and turbulence intensity on flame front structure and burning velocities of premixed turbulent hydrocarbon/air Bunsen flames, Combust. Flame 162, 4417 (2015).
    [[52]]
    J. Wang, S. Yu, M. Zhang, W. Jin, Z. Huang, S. Chen, and H. Kobayashi, Burning velocity and statistical flame front structure of turbulent premixed flames at high pressure up to 1.0 MPa, Exp. Therm. Fluid Sci. 68, 196 (2015).
    [[53]]
    W. Zhang, J. Wang, Q. Yu, W. Jin, M. Zhang, and Z. Huang, Investigation of the fuel effects on burning velocity and flame structure of turbulent premixed flames based on leading points concept, Combust. Sci. Technol. 190, 1354 (2018).
    [[54]]
    C. Cohé, C. Chauveau, I. Gökalp, and D. F. Kurtuluş, CO24, Proc. Combust. Instit. 32, 1803 (2009).
    [[55]]
    C. Cohé, F. Halter, C. Chauveau, I. Gökalp, and Ö. L. Gülder, Fractal characterisation of high-pressure and hydrogen-enriched CH4, Proc. Combust. Instit. 31, 1345 (2007).
    [[56]]
    W. Zhang, J. Wang, W. Lin, R. Mao, H. Xia, M. Zhang, and Z. Huang, Effect of differential diffusion on turbulent lean premixed hydrogen enriched flames through structure analysis, Int. J. Hydrogen Energy 45, 10920 (2020).
    [[57]]
    A. Ichikawa, Y. Naito, A. Hayakawa, T. Kudo, and H. Kobayashi, Burning velocity and flame structure of CH43, Int. J. Hydrogen Energy 44, 6991 (2019).
    [[58]]
    Ö. L. Gülder, G. J. Smallwood, R. Wong, D. R. Snelling, R. Smith, B. M. Deschamps, and J. C. Sautet, Flame front surface characteristics in turbulent premixed propane/air combustion, Combust. Flame 120, 407 (2000).
    [[59]]
    S. Kheirkhah, and Ö. L. Gülder, Consumption speed and burning velocity in counter-gradient and gradient diffusion regimes of turbulent premixed combustion, Combust. Flame 162, 1422 (2015).
    [[60]]
    S. Chaudhuri, F. Wu, D. Zhu, and C. K. Law, Flame speed and self-similar propagation of expanding turbulent premixed flames, Phys. Rev. Lett. 108, 044503 (2012).
    [[61]]
    S. S. Shy, C. C. Liu, J. Y. Lin, L. L. Chen, A. N. Lipatnikov, and S. I. Yang, Correlations of high-pressure lean methane and syngas turbulent burning velocities: Effects of turbulent Reynolds, Damköhler, and Karlovitz numbers, Proc. Combust. Institut. 35, 1509 (2015).
    [[62]]
    M. Klein, H. Nachtigal, M. Hansinger, M. Pfitzner, and N. Chakraborty, Flame curvature distribution in high pressure turbulent bunsen premixed flames, Flow Turbul. Combust. 101, 1173 (2018).
    [[63]]
    D. Bradley, P. H. Gaskell, X. J. Gu, and A. Sedaghat, Premixed flamelet modelling: Factors influencing the turbulent heat release rate source term and the turbulent burning velocity, Combust. Flame 143, 227 (2005).
    [[64]]
    H. Kobayashi, H. Hagiwara, H. Kaneko, and Y. Ogami, Effects of CO2, Proc. Combust. Instit. 31, 1451 (2007).
    [[65]]
    Y. Shim, S. Tanaka, M. Tanahashi, and T. Miyauchi, Local structure and fractal characteristics of H2, Proc. Combust. Instit. 33, 1455 (2011).
    [[66]]
    C. Meneveau, and T. Poinsot, Stretching and quenching of flamelets in premixed turbulent combustion, Combust. Flame 86, 311 (1991).
    [[67]]
    G. Nivarti, and S. Cant, Direct numerical simulation of the bending effect in turbulent premixed flames, Proc. Combust. Instit. 36, 1903 (2017).
    [[68]]
    D. Lee, and K. Y. Huh, Statistically steady incompressible DNS to validate a new correlation for turbulent burning velocity in turbulent premixed combustion, Flow Turbul. Combust. 84, 339 (2010).
    [[69]]
    F. Creta, P. E. Lapenna, R. Lamioni, N. Fogla, and M. Matalon, Propagation of premixed flames in the presence of Darrieus-Landau and thermal diffusive instabilities, Combust. Flame 216, 256 (2020).
    [[70]]
    Z. Lu, and Y. Yang, STModel. https://github.com/YYgroup/STmodel (2021).
    [[71]]
    G. P. Smith, Y. Tao, and H. Wang. Foundational fuel chemistry model version 1.0 (FFCM-1). http://nanoenergy.stanford.edu/ffcm1(2016).
    [[72]]
    S. G. Davis, A. V. Joshi, H. Wang, and F. N. Egolfopoulos, An optimized kinetic model of H2, Proc. Combust. Instit. 30, 1283 (2005).
    [[73]]
    Mechanical and Aerospace Engineering (Combustion Research), University of California at San Diego. Chemical-kinetic mechanisms for combustion applications. http://combustion.ucsd.edu (2016).
    [[74]]
    D. G. Goodwin, R. L. Speth, H. K. Moffat, and B. W. Weber, Cantera: An object-oriented software toolkit for chemical kinetics, thermodynamics, and transport processes. https://www.cantera.org (2021). Version 2.5.1.
    [[75]]
    C. T. Bowman, R. K. Hanson, D. F. Davidson, W. C. Gardiner, V. Lissianski Jr., G. P. Smith, D. M. Golden, M. Frenklach, and M. Goldenberg. GRI-Mech 2.11. http://combustion.berkeley.edu/gri_mech/ (1997).
    [[76]]
    C. S. Yoo, Z. Luo, T. Lu, H. Kim, and J. H. Chen, A DNS study of ignition characteristics of a lean iso, Proc. Combust. Instit. 34, 2985 (2013).
  • 加载中

Catalog

    Figures(10)  / Tables(2)

    Article Metrics

    Article views(67) PDF downloads(0) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return