Volume 38 Issue 3
Feb 2022
Turn off MathJax
Article Contents
K. Zhang, F. Hong, J. Luo, and Z. Deng,Topological edge state analysis of hexagonal phononic crystals. Acta Mech. Sin., 2022, 38, http://www.w3.org/1999/xlink' xlink:href='https://doi.org/10.1007/s10409-021-09030-x'>https://doi.org/10.1007/s10409-021-09030-x
Citation: K. Zhang, F. Hong, J. Luo, and Z. Deng,Topological edge state analysis of hexagonal phononic crystals. Acta Mech. Sin., 2022, 38, http://www.w3.org/1999/xlink" xlink:href="https://doi.org/10.1007/s10409-021-09030-x">https://doi.org/10.1007/s10409-021-09030-x

Topological edge state analysis of hexagonal phononic crystals

doi: 10.1007/s10409-021-09030-x
Funds:

the National Natural Science Foundation of China Grant

More Information
  • Corresponding author: Zhang Kai, E-mail addresses: kzhang@nwpu.edu.cn (Kai Zhang)
  • Accepted Date: 08 Oct 2021
  • Available Online: 01 Aug 2022
  • Publish Date: 23 Feb 2022
  • Issue Publish Date: 01 Mar 2022
  • In this study, we propose valley phononic crystals that consist of a hexagonal aluminum plate with six chiral arrangements of ligaments. Valley phononic crystals were introduced into a topological insulator (TI) system to produce topologically protected edge waves (TPEWs) along the topological interfaces. The implementation of chiral topological edge states is different from the implementation of topological edge states of systems with symmetry. Unlike the conventional breaking of mirror symmetry, a new complete band with topological edge modes gap was opened up at the Dirac point by tuning the difference in lengths of the ligaments in the chiral unit cells. We investigated the dispersion properties in chiral systems and applied the dispersion properties to waveguides on the interfaces to achieve designable route systems. Furthermore, we simulated the robust propagation of TPEWs in different routes and demonstrated their immunity to backscattering at defects. Finally, the existence of the valley Hall effect in chiral systems was demonstrated. The study findings may lead to the further study of the topological states of chiral materials.

     

  • loading
  • [1]
    Z. Zhang, W. Wang, and C. Wang, Parameter identification of nonlinear system via a dynamic frequency approach and its energy harvester application, Acta Mech. Sin. 36, 606 (2020).
    [2]
    T. C. Yuan, J. Yang, and L. Q. Chen, Nonlinear vibration analysis of a circular composite plate harvester via harmonic balance, Acta Mech. Sin. 35, 912 (2019).
    [3]
    W. Li, X. D. Yang, W. Zhang, Y. Ren, and T. Z. Yang, Free vibration analysis of a spinning piezoelectric beam with geometric nonlinearities, Acta Mech. Sin. 35, 879 (2019).
    [4]
    G. P. Sreenivasan, and M. M. Keppanan, Analytical approach for the design of convoluted air suspension and experimental validation, Acta Mech. Sin. 35, 1093 (2019).
    [5]
    K. Zhang, P. Zhao, F. Hong, Y. Yu, and Z. Deng, On the directional wave propagation in the tetrachiral and hexachiral lattices with local resonators, Smart Mater. Struct. 29, 015017 (2020).
    [6]
    K. Zhang, P. Zhao, C. Zhao, F. Hong, and Z. Deng, Study on the mechanism of band gap and directional wave propagation of the auxetic chiral lattices, Compos. Struct. 238, 111952 (2020).
    [7]
    H. Fan, B. Xia, L. Tong, S. Zheng, and D. Yu, Elastic higher-order topological insulator with topologically protected corner states, Phys. Rev. Lett. 122, 204301 31172787(2019).
    [8]
    S. Raghu, and F. D. M. Haldane, Analogs of quantum-Hall-effect edge states in photonic crystals, Phys. Rev. A 78, 033834 (2008).
    [9]
    T. Ochiai, and M. Onoda, Photonic analog of graphene model and its extension: Dirac cone, symmetry, and edge states, Phys. Rev. B 80, 155103 (2009).
    [10]
    D. N. Sheng, Z. Y. Weng, L. Sheng, and F. D. M. Haldane, Quantum spin-Hall effect and topologically invariant Chern numbers, Phys. Rev. Lett. 97, 036808 16907533(2006).
    [11]
    Y. Kim, K. Choi, J. Ihm, and H. Jin, Topological domain walls and quantum valley Hall effects in silicene, Phys. Rev. B 89, 085429 (2014).
    [12]
    L. Ju, Z. Shi, N. Nair, Y. Lv, C. Jin, J. Velasco Jr, C. Ojeda-Aristizabal, H. A. Bechtel, M. C. Martin, A. Zettl, J. Analytis, and F. Wang, Topological valley transport at bilayer graphene domain walls, Nature 520, 650 25901686(2015).
    [13]
    F. Zhang, A. H. MacDonald, and E. J. Mele, Valley Chern numbers and boundary modes in gapped bilayer graphene, Proc. Natl. Acad. Sci. USA 110, 10546 23754439(2013).
    [14]
    Z. Lan, J. W. You, and N. C. Panoiu, Nonlinear one-way edge-mode interactions for frequency mixing in topological photonic crystals, Phys. Rev. B 101, 155422 (2020).
    [15]
    Z. Zhang, Y. Tian, Y. Wang, S. Gao, Y. Cheng, X. Liu, and J. Christensen, Directional acoustic antennas based on valley-Hall topological insulators, Adv. Mater. 30, 1803229 30059167(2018).
    [16]
    C. Chen, T. Chen, Y. Wang, J. Wu, and J. Zhu, Observation of topological locally resonate and Bragg edge modes in a two-dimensional slit-typed sonic crystal, Appl. Phys. Express 12, 097001 (2019).
    [17]
    K. Zhang, F. Hong, J. Luo, and Z. Deng, Topological insulator in a hexagonal plate with droplet holes, J. Phys. D-Appl. Phys. 54, 105502 (2021).
    [18]
    X. Liu, G. Cai, and K. W. Wang, Reconfigurable topologically protected wave propagation in metastable structure, J. Sound Vib. 492, 115819 (2021).
    [19]
    Y. Dong, Y. Wang, C. Ding, S. Zhai, and X. Zhao, Tunable topological valley transport in acoustic topological metamaterials, Physica B 605, 412733 (2021).
    [20]
    Z. Tian, C. Shen, J. Li, E. Reit, H. Bachman, J. E. S. Socolar, S. A. Cummer, and T. J. Huang, Dispersion tuning and route reconfiguration of acoustic waves in valley topological phononic crystals, Nat. Commun. 11, 762 32034148(2020).
    [21]
    Z. Zhang, Y. Tian, Y. Cheng, Q. Wei, X. Liu, and J. Christensen, Topological acoustic Delay line, Phys. Rev. Appl. 9, 034032 (2018).
    [22]
    B. Xia, G. Wang, and S. Zheng, Robust edge states of planar phononic crystals beyond high-symmetry points of Brillouin zones, J. Mech. Phys. Solids 124, 471 (2019).
    [23]
    Q. Zhang, Y. Chen, K. Zhang, and G. Hu, Programmable elastic valley Hall insulator with tunable interface propagation routes, Extreme Mech. Lett. 28, 76 (2019).
    [24]
    W. Zhou, Y. Su, Y. Muhammad, W. Chen, and C. W. Lim, Voltage-controlled quantum valley Hall effect in dielectric membrane-type acoustic metamaterials, Int. J. Mech. Sci. 172, 105368 (2020).
    [25]
    J. P. Xia, D. Jia, H. X. Sun, S. Q. Yuan, Y. Ge, Q. R. Si, and X. J. Liu, Programmable coding acoustic topological insulator, Adv. Mater. 30, 1805002 30294812(2018).
    [26]
    C. Chen, T. Chen, A. Song, X. Song, and J. Zhu, Switchable asymmetric acoustic transmission based on topological insulator and metasurfaces, J. Phys. D-Appl. Phys. 53, 44LT01 (2020).
    [27]
    A. Spadoni, M. Ruzzene, S. Gonella, and F. Scarpa, Phononic properties of hexagonal chiral lattices, Wave Motion 46, 435 (2009).
    [28]
    X. N. Liu, G. L. Huang, and G. K. Hu, Chiral effect in plane isotropic micropolar elasticity and its application to chiral lattices, J. Mech. Phys. Solids 60, 1907 (2012).
    [29]
    Q. He, and T. Jiang, Complementary multi-mode low-frequency vibration energy harvesting with chiral piezoelectric structure, Appl. Phys. Lett. 110, 213901 (2017).
    [30]
    X. Wen, C. Qiu, J. Lu, H. He, M. Ke, and Z. Liu, Acoustic Dirac degeneracy and topological phase transitions realized by rotating scatterers, J. Appl. Phys. 123, 091703 (2018).
    [31]
    X. N. Liu, G. K. Hu, C. T. Sun, and G. L. Huang, Wave propagation characterization and design of two-dimensional elastic chiral metacomposite, J. Sound Vib. 330, 2536 (2011).
    [32]
    R. Zhu, X. N. Liu, G. K. Hu, C. T. Sun, and G. L. Huang, Negative refraction of elastic waves at the deep-subwavelength scale in a single-phase metamaterial, Nat. Commun. 5, 5510 25417671(2014).
    [33]
    Z. Wen, S. Zeng, D. Wang, Y. Jin, and B. Djafari-Rouhani, Robust edge states of subwavelength chiral phononic plates, Extreme Mech. Lett. 44, 101209 (2021).
  • 加载中

Catalog

    Figures(5)

    Article Metrics

    Article views(104) PDF downloads(0) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return