Citation: | Y. Z. Huang, M. L. Feng, and X. H. Chen, Stability analysis of quasicrystal torsion micromirror actuator based on the strain gradient theory. Acta Mech. Sin., 2022, 38, |
[1] |
|
[2] |
W. Sun, J. Lan, and J. T. W. Yeow, Constraint adaptive output regulation of output feedback systems with application to electrostatic torsional micromirror, Int. J. Robust Nonlin. Control 25, 504 (2015).
|
[3] |
|
[4] |
C. S. Harsha, C. S. Prasanth, and B. Pratiher, Prediction of pull-in phenomena and structural stability analysis of an electrostatically actuated microswitch, Acta Mech. 227, 2577 (2016).
|
[5] |
X. M. Zhang, F. S. Chau, C. Quan, Y. L. Lam, and A. Q. Liu, A study of the static characteristics of a torsional micromirror, Sens. Actuat. A-Phys. 90, 73 (2001).
|
[6] |
|
[7] |
Y. Hua, S. Wang, B. Li, G. Bai, and P. Zhang, Dynamic modeling and anti-disturbing control of an electromagnetic mems torsional micromirror considering external vibrations in vehicular LiDAR, Micromachines 12, 69 33435401(2021).
|
[8] |
W. M. Zhang, H. Yan, Z. K. Peng, and G. Meng, Electrostatic pull-in instability in MEMS/NEMS: A review, Sens. Actuat. A-Phys. 214, 187 (2014).
|
[9] |
F. Khatami, and G. Rezazadeh, Dynamic response of a torsional micromirror to electrostatic force and mechanical shock, Microsyst. Technol. 15, 535 (2009).
|
[10] |
Q. Li, J. Xi, and C. Hua, Bifurcations of a micro-electromechanical nonlinear coupling system, Commun. Nonlin. Sci. Numer. Simul. 16, 769 (2011).
|
[11] |
S. Malihi, Y. T. Beni, and H. Golestanian, Dynamic pull-in stability of torsional nano/micromirrors with size-dependency, squeeze film damping and van der waals effect, Optik 128, 156 (2017).
|
[12] |
F. M. M. Seyyed, A. Rastgoo, and M. Taghi Ahmadian, Size-dependent instability of carbon nanotubes under electrostatic actuation using nonlocal elasticity, Int. J. Mech. Sci. 80, 144 (2014).
|
[13] |
H. Ren, X. Zhuang, and T. Rabczuk, A nonlocal operator method for solving partial differential equations, Comput. Methods Appl. Mech. Eng. 358, 112621 (2020).
|
[14] |
H. Ren, X. Zhuang, and T. Rabczuk, A higher order nonlocal operator method for solving partial differential equations, Comput. Methods Appl. Mech. Eng. 367, 113132 (2020).
|
[15] |
M. Shaat, F. F. Mahmoud, X. L. Gao, and A. F. Faheem, Size-dependent bending analysis of Kirchhoff nano-plates based on a modified couple-stress theory including surface effects, Int. J. Mech. Sci. 79, 31 (2014).
|
[16] |
H. M. Sedighi, Size-dependent dynamic pull-in instability of vibrating electrically actuated microbeams based on the strain gradient elasticity theory, Acta Astronaut. 95, 111 (2014).
|
[17] |
K. F. Wang, and B. L. Wang, A general model for nano-cantilever switches with consideration of surface effects and nonlinear curvature, Phys. E-Low-dimen. Syst. Nanostruct. 66, 197 (2015).
|
[18] |
A. Zabihi, R. Ansari, J. Torabi, F. Samadani, and K. Hosseini, An analytical treatment for pull-in instability of circular nanoplates based on the nonlocal strain gradient theory with clamped boundary condition, Mater. Res. Express 6, 0950b3 (2019).
|
[19] |
A. A. Daikh, M. S. A. Houari, and A. Tounsi, Corrigendum: Buckling analysis of porous FGM sandwich nanoplates due to heat conduction via nonlocal strain gradient theory (2019 Eng. Res. Express 1 015022), Eng. Res. Express 2, 049501 (2020).
|
[20] |
A. Zabihi, J. Torabi, and R. Ansari, Effects of geometric nonlinearity on the pull-in instability of circular microplates based on modified strain gradient theory, Phys. Scr. 95, 115204 (2020).
|
[21] |
S. M. J. Hosseini, J. Torabi, R. Ansari, and A. Zabihi, Geometrically nonlinear electromechanical instability of fg nanobeams by nonlocal strain gradient theory, Int. J. Str. Stab. Dyn. 21, 2150051 (2021).
|
[22] |
B. Hu, J. Liu, Y. Wang, B. Zhang, and H. Shen, Wave propagation in graphene reinforced piezoelectric sandwich nanoplates via high-order nonlocal strain gradient theory, Acta Mech. Sin. doi: 10.1007/s10409-021-01113-y (2021).
|
[23] |
S. M. J. Hosseini, R. Ansari, J. Torabi, K. Hosseini, and A. Zabihi, Nonlocal strain gradient pull-in study of nanobeams considering various boundary conditions, Iran J. Sci. Technol. Trans. Mech. Eng. 45, 891 (2021).
|
[24] |
|
[25] |
|
[26] |
V. Fournée, H. R. Sharma, M. Shimoda, A. P. Tsai, B. Unal, A. R. Ross, T. A. Lograsso, and P. A. Thiel, Quantum size effects in metal thin films grown on quasicrystalline substrates, Phys. Rev. Lett. 95, 155504 16241737(2005).
|
[27] |
A. Inoue, F. Kong, S. Zhu, C. T. Liu, and F. Al-Marzouki, Development and applications of highly functional Al-based materials by use of metastable phases, Mat. Res. 18, 1414 (2015).
|
[28] |
L. Zhang, J. Guo, and Y. Xing, Bending analysis of functionally graded one-dimensional hexagonal piezoelectric quasicrystal multilayered simply supported nanoplates based on nonlocal strain gradient theory, Acta Mech. Solid Sin. 34, 237 (2021).
|
[29] |
X. Li, J. Guo, and T. Sun, Bending deformation of multilayered one-dimensional quasicrystal nanoplates based on the modified couple stress theory, Acta Mech. Solid Sin. 32, 785 (2019).
|
[30] |
S. Malihi, Y. T. Beni, and H. Golestanian, Analytical modeling of dynamic pull-in instability behavior of torsional nano/micromirrors under the effect of Casimir force, Optik 127, 4426 (2016).
|
[31] |
P. A. Thiel, Quasicrystal surfaces, Annu. Rev. Phys. Chem. 59, 129 17988201(2008).
|
[32] |
I. Brevik, J. B. Aarseth, J. S. Høye, and K. A. Milton, Temperature dependence of the Casimir effect, Phys. Rev. E 71, 056101 16089596(2005).
|
[33] |
F. Pan, J. Kubby, E. Peeters, A. T. Tran, and S. Mukherjee, Squeeze film damping effect on the dynamic response of a mems torsion mirror, J. Micromech. Microeng. 8, 200 (1999).
|
[34] |
R. Atabak, H. M. Sedighi, A. Reza, and E. Mirshekari, Analytical investigation of air squeeze film damping for bi-axial micro-scanner using eigenfunction expansion method, Math. Meth. Appl. Sci. mma.6658 (2020).
|
[35] |
J. Abdi, M. Keivani, and M. Abadyan, Microstructure-dependent dynamic stability analysis of torsional NEMS scanner in van der Waals regime, Int. J. Mod. Phys. B 30, 1650109 (2016).
|
[36] |
P. Tong, F. Yang, D. C. C. Lam, and J. Wang, Size effects of hair-sized structures-torsion, Key Eng. Mater. 261-263, 11 (2004).
|
[37] |
E. Samaniego, C. Anitescu, S. Goswami, V. M. Nguyen-Thanh, H. Guo, K. Hamdia, X. Zhuang, and T. Rabczuk, An energy approach to the solution of partial differential equations in computational mechanics via machine learning: Concepts, implementation and applications, Comput. Methods Appl. Mech. Eng. 362, 112790 (2019).
|
[38] |
C. Anitescu, E. Atroshchenko, N. Alajlan, and T. Rabczuk, Artificial neural network methods for the solution of second order boundary value problems, Comput. Mater. Continua 59, 345 (2019).
|
[39] |
H. Guo, X. Zhuang, and T. Rabczuk, A deep collocation method for the bending analysis of Kirchhoff plate, Comput. Mater. Continua 59, 433 (2019).
|
[40] |
T. Rabczuk, H. Ren, and X. Zhuang, A nonlocal operator method for partial differential equations with application to electromagnetic waveguide problem, Comput. Mater. Continua 59, 31 (2019).
|
[41] |
N. Vu-Bac, T. Lahmer, X. Zhuang, T. Nguyen-Thoi, and T. Rabczuk, A software framework for probabilistic sensitivity analysis for computationally expensive models, Adv. Eng. Software 100, 19 (2016).
|