Citation: | G. He, K. Gao, Z. Yu, J. Jiang, and Q. Li,Adaptive subdomain integration method for representing complex localized geometry in ANCF. Acta Mech. Sin., 2022, 38, |
[1] |
A. A. Shabana, and D. Zhang, ANCF curvature continuity: Application to soft and fluid materials, Nonlin. Dyn. 100, 1497 (2020).
|
[2] |
A. A. Shabana, C. J. Desai, E. Grossi, and M. Patel, Generalization of the strain-split method and evaluation of the nonlinear ANCF finite elements, Acta Mech. 231, 1365 (2020).
|
[3] |
P. Lan, Q. Tian, and Z. Yu, A new absolute nodal coordinate formulation beam element with multilayer circular cross section, Acta Mech. Sin. 36, 82 (2020).
|
[4] |
H. Hu, Q. Tian, and C. Liu, Computational dynamics of soft machines, Acta Mech. Sin. 33, 516 (2017).
|
[5] |
S. Zhang, A. L. Gain, and J. A. Norato, Adaptive mesh refinement for topology optimization with discrete geometric components, Comput. Methods Appl. Mech. Eng. 364, 112930 (2020).
|
[6] |
R. Bouclier, J. C. Passieux, and M. Salaün, Local enrichment of NURBS patches using a non-intrusive coupling strategy: Geometric details, local refinement, inclusion, fracture, Comput. Methods Appl. Mech. Eng. 300, 1 (2016).
|
[7] |
J. Xu, N. Sun, L. Shu, T. Rabczuk, and G. Xu, An improved integration for trimmed geometries in isogeometric analysis, Comput. Mater. Continua 60, 615 (2019).
|
[8] |
B. Marussig, and T. J. R. Hughes, A review of trimming in isogeometric analysis: Challenges, data exchange and simulation aspects, Arch. Computat. Methods Eng. 25, 1131 31186608(2018).
|
[9] |
A. Chemin, T. Elguedj, and A. Gravouil, Isogeometric local h-refinement strategy based on multigrids, Finite Elem. Anal. Des. 100, 77 (2015).
|
[10] |
Y. L. Kuo, W. L. Cleghorn, K. Behdinan, and R. G. Fenton, The h-p-r-refinement finite element analysis of a planar high-speed four-bar mechanism, Mechanism Machine Theor. 41, 505 (2006).
|
[11] |
A. I. Valkeapää, M. K. Matikainen, and A. M. Mikkola, Meshing strategies in the absolute nodal coordinate formulation-based Euler-Bernoulli beam elements, Proc. Institut. Mech. Engineers Part K-J. Multi-Body Dyn. 230, 606 (2016).
|
[12] |
Y. Zhang, C. Wei, Y. Zhao, C. Tan, and Y. Liu, Adaptive ANCF method and its application in planar flexible cables, Acta Mech. Sin. 34, 199 (2018).
|
[13] |
N. A. Dodgson, and J. Kosinka, Can local NURBS refinement be achieved by modifying only the user interface?, Comput.-Aided Des. 71, 28 (2016).
|
[14] |
L. Coradello, D. D’Angella, M. Carraturo, J. Kiendl, S. Kollmannsberger, E. Rank, and A. Reali, Hierarchically refined isogeometric analysis of trimmed shells, Comput. Mech. 66, 431 (2020).
|
[15] |
G. Zhao, J. Yang, W. Wang, Y. Zhang, X. Du, and M. Guo, T-splines based isogeometric topology optimization with arbitrarily shaped design domains, Comput. Modeling Eng. Sci. 123, 1033 (2020).
|
[16] |
J. Videla, F. Contreras, H. X. Nguyen, and E. Atroshchenko, Application of PHT-splines in bending and vibration analysis of cracked Kirchhoff-Love plates, Comput. Methods Appl. Mech. Eng. 361, 112754 (2020).
|
[17] |
D. Miao, Z. Zou, M. A. Scott, M. J. Borden, and D. C. Thomas, Isogeometric Bézier dual mortaring: The enriched Bézier dual basis with application to second- and fourth-order problems, Comput. Methods Appl. Mech. Eng. 363, 112900 (2020).
|
[18] |
Z. Zou, M. A. Scott, M. J. Borden, D. C. Thomas, W. Dornisch, and E. Brivadis, Isogeometric Bézier dual mortaring: Refineable higher-order spline dual bases and weakly continuous geometry, Comput. Methods Appl. Mech. Eng. 333, 497 (2018).
|
[19] |
R. R. Hiemstra, K. M. Shepherd, M. J. Johnson, L. Quan, and T. J. R. Hughes, Towards untrimmed NURBS: CAD embedded reparameterization of trimmed B-rep geometry using frame-field guided global parameterization, Comput. Methods Appl. Mech. Eng. 369, 113227 (2020).
|
[20] |
R. Schmidt, R. Wüchner, and K. U. Bletzinger, Isogeometric analysis of trimmed NURBS geometries, Comput. Methods Appl. Mech. Eng. 241-244, 93 (2012).
|
[21] |
J. Xu, L. Gao, M. Xiao, J. Gao, and H. Li, Isogeometric topology optimization for rational design of ultra-lightweight architected materials, Int. J. Mech. Sci. 166, 105103 (2020).
|
[22] |
P. Kang, and S. K. Youn, Isogeometric topology optimization of shell structures using trimmed NURBS surfaces, Finite Elem. Anal. Des. 120, 18 (2016).
|
[23] |
G. He, M. Patel, and A. Shabana, Integration of localized surface geometry in fully parameterized ANCF finite elements, Comput. Methods Appl. Mech. Eng. 313, 966 (2017).
|
[24] |
J. Parvizian, A. Düster, and E. Rank, Finite cell method, Comput. Mech. 41, 121 (2007).
|
[25] |
M. Ranjbar, M. Mashayekhi, J. Parvizian, A. Düster, and E. Rank, Finite cell method implementation and validation of a nonlocal integral damage model, Int. J. Mech. Sci. 128-129, 401 (2017).
|
[26] |
K. Khadra, P. Angot, S. Parneix, and J. P. Caltagirone, Fictitious domain approach for numerical modelling of Navier-Stokes equations, Int. J. Numer. Meth. Fluids 34, 651 (2000).
|
[27] |
E. Rank, S. Kollmannsberger, C. Sorger, and A. Düster, Shell finite cell method: A high order fictitious domain approach for thin-walled structures, Comput. Methods Appl. Mech. Eng. 200, 3200 (2011).
|
[28] |
L. Kudela, N. Zander, T. Bog, S. Kollmannsberger, and E. Rank, Efficient and accurate numerical quadrature for immersed boundary methods, Adv. Model. Simul. Eng. Sci. 2, 10 (2015).
|
[29] |
M. Patel, G. Orzechowski, Q. Tian, and A. A. Shabana, A new multibody system approach for tire modeling using ANCF finite elements, Proc. Instit. Mech. Engineers Part K-J. Multi-body Dyn. 230, 69 (2016).
|
[30] |
|
[31] |
W. J. Gordon, and C. A. Hall, Transfinite element methods: Blending-function interpolation over arbitrary curved element domains, Numer. Math. 21, 109 (1973).
|