Volume 38 Issue 1
Dec 2022
Turn off MathJax
Article Contents
B. Wang, P. Hao, X. Ma, and K. Tian,Knockdown factor of buckling load for axially compressed cylindrical shells: state of the art and new perspectives. Acta Mech. Sin., 2022, 38, http://www.w3.org/1999/xlink' xlink:href='https://doi.org/10.1007/s10409-021-09035-x'>https://doi.org/10.1007/s10409-021-09035-x
Citation: B. Wang, P. Hao, X. Ma, and K. Tian,Knockdown factor of buckling load for axially compressed cylindrical shells: state of the art and new perspectives. Acta Mech. Sin., 2022, 38, http://www.w3.org/1999/xlink" xlink:href="https://doi.org/10.1007/s10409-021-09035-x">https://doi.org/10.1007/s10409-021-09035-x

Knockdown factor of buckling load for axially compressed cylindrical shells: state of the art and new perspectives

doi: 10.1007/s10409-021-09035-x
Funds:

the National Natural Science Foundation of China Grant

the National Defense Basic Research Program Grant

the Project supported by Liaoning Provincial Natural Science Foundation Grant

Liaoning Revitalization Talents Program Grant

the Fundamental Research Funds for the Central Universities Grant

More Information
  • Corresponding author: Corresponding author. E-mail address: wangbo@dlut.edu.cn (Bo Wang)
  • Accepted Date: 24 Nov 2021
  • Available Online: 05 Dec 2022
  • Publish Date: 19 Jan 2022
  • Issue Publish Date: 01 Jan 2022
  • Thin-walled structures are commonly utilized in aerospace and aircraft structures, which are prone to buckling under axial compression and extremely sensitive to geometric imperfections. After decades of efforts, it still remains a challenging issue to accurately predict the lower-bound buckling load due to the impact of geometric imperfections. Up to now, the lower-bound curve in NASA SP-8007 is still widely used as the design criterion of aerospace thin-walled structures, and this series of knockdown factors (KDF) has been proven to be overly conservative with the significant promotion of the manufacturing process. In recent years, several new numerical and experimental methods for determining KDF have been established, which are systematically reviewed in this paper. The Worst Multiple Perturbation Load Approach (WMPLA) is one of the most representative methods to reduce the conservatism of traditional methods in a rational manner. Based on an extensive collection of test data from 1990 to 2020, a new lower-bound curve is approximated to produce a series of improved KDFs. It is evident that these new KDFs have an overall improvement of 0.1-0.3 compared with NASA SP-8007, and the KDF predicted by the WMPLA is very close to the front of the new curve. This may provide some insight into future design guidelines of axially compressed cylindrical shells, which is promising for the lightweight design of large-diameter aerospace structures.

     

  • loading
  • [1]
    R. Lorenz, Achsensymmetrische verzerrungen in dünnwandigen hohlzylindern (in German), Z. Vereines Dtsch Ingen. 52, 1706 (1908)
    [2]
    S. P. Timoshenko, and J. M. Gere, Theory of Elastic Stability, 2nd ed (Dover Publications, New York, 2009)
    [3]
    L. H. Donnell, and C. C. Wan, Effect of imperfections on buckling of thin cylinders and columns under axial compression, J. Appl. Mech. 17, 73 (1950).
    [4]
    T. von Kármán, and H. Tsien, The Buckling of Thin Cylindrical Shells under Axial Compression (Elsevier, 2012), pp. 165-181
    [5]
    W. T. Koiter, On the Stability of Elastic Equilibrium, Vol. 833 (National Aeronautics and Space Administration, 1967)
    [6]
    J. P. Peterson, P. Seide, V. I. Weingarten, J. P. Peterson, P. Seide, and V. I. Weingarten, Buckling of thin-walled circular cylinders, NASA SP-8007 (NASA Special Publication, 1968)
    [7]
    B. O. Almroth, A. B. Burns, and E. V. Pittner, Design criteria for axially loaded cylindrical shells, J. Spacecraft Rockets 7, 714 (1971).
    [8]
    A. Takano, Statistical knockdown factors of buckling anisotropic cylinders under axial compression, J. Appl. Mech. 79, 051004 (2012).
    [9]
    J. M. Rotter, and H. Schmidt, Buckling of Steel Shells: European Design Recommendations (European Convention for Constructional Steelwork (ECCS), 2014)
    [10]
    H. N. R. Wagner, C. Hühne, S. Niemann, K. Tian, B. Wang, and P. Hao, Robust knockdown factors for the design of cylindrical shells under axial compression: analysis and modeling of stiffened and unstiffened cylinders, Thin-Walled Struct. 127, 629 (2018).
    [11]
    H. N. R. Wagner, C. Hühne, and S. Niemann, Robust knockdown factors for the design of axially loaded cylindrical and conical composite shells—development and validation, Compos. Struct. 173, 281 (2017).
    [12]
    Z. R. Tahir, and P. Mandal, Artificial neural network prediction of buckling load of thin cylindrical shells under axial compression, Eng. Struct. 152, 843 (2017).
    [13]
    M. Hilburger, Developing the next generation shell buckling design factors and technologies, in 53rd AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics and Materials Conference (Honolulu, 2013)
    [14]
    R. Degenhardt, New robust design guideline for imperfection sensitive composite launcher structures—the DESICOS project, in 3rd International Conference on Buckling and Postbuckling Behaviour of Composite Laminated Shell Structures (2015)
    [15]
    B. Wang, P. Hao, K. Du, and K. Tian, Lightweight design theory and method of grid stiffened cylinder shell allowing for imperfection sensitivity (in Chinese), China Basic Sci. 20, 28 (2018)
    [16]
    J. G. Teng, Buckling of thin shells: recent advances and trends, Appl. Mech. Rev. 49, 263 (1996).
    [17]
    J. Arbocz, and J. H. Starnes Jr., Future directions and challenges in shell stability analysis, Thin-Walled Struct. 40, 729 (2002).
    [18]
    H. Schmidt, Stability of steel shell structures, J. Constr. Steel Res. 55, 159 (2000).
    [19]
    Q. Du, Advance and application for the morden nonlinear stability theory of the thin shell (in Chinese), Struct. Environ. Eng. 29, 41 (2002)
    [20]
    Y. Zhao, and J. Teng, Stability design of axially compressed thin steel cylindrical shells (in Chinese), Eng. Mech. 20, 116 (2003)
    [21]
    B. L. O. Edlund, Buckling of metallic shells: buckling and postbuckling behaviour of isotropic shells, especially cylinders, Struct. Control Health Monit. 14, 693 (2007).
    [22]
    X. Bai, and R. Guo, Main branches of recent elastic stability theory (in Chinese), J. Nav. Univ. Eng. 16, 44 (2004)
    [23]
    P. Qiao, Y. Wang, and L. Lu, Advances in stability study of cylindrical shells (in Chinese), Chin. Q. Mech. 39, 223 (2018)
    [24]
    F. S. Liguori, G. Zucco, A. Madeo, D. Magisano, L. Leonetti, G. Garcea, and P. M. Weaver, Postbuckling optimisation of a variable angle tow composite wingbox using a multi-modal Koiter approach, Thin-Walled Struct. 138, 183 (2019).
    [25]
    A. Madeo, R. M. J. Groh, G. Zucco, P. M. Weaver, G. Zagari, and R. Zinno, Post-buckling analysis of variable-angle tow composite plates using Koiter’s approach and the finite element method, Thin-Walled Struct. 110, 1 (2017).
    [26]
    G. Garcea, F. S. Liguori, L. Leonetti, D. Magisano, and A. Madeo, Accurate and efficient a posteriori, Int. J. Numer. Meth. Engng. 112, 1154 (2017).
    [27]
    R. J. Mania, A. Madeo, G. Zucco, and T. Kubiak, Imperfection sensitivity of post-buckling of FML channel section column, Thin-Walled Struct. 114, 32 (2017).
    [28]
    F. S. Liguori, A. Madeo, D. Magisano, L. Leonetti, and G. Garcea, Post-buckling optimisation strategy of imperfection sensitive composite shells using Koiter method and Monte Carlo simulation, Compos. Struct. 192, 654 (2018).
    [29]
    K. Liang, M. Ruess, and M. Abdalla, An eigenanalysis-based bifurcation indicator proposed in the framework of a reduced-order modeling technique for non-linear structural analysis, Int. J. Non-Linear Mech. 81, 129 (2016).
    [30]
    K. Liang, C. Yang, and Q. Sun, A smeared stiffener based reduced-order modelling method for buckling analysis of isogrid-stiffened cylinder, Appl. Math. Model. 77, 756 (2020).
    [31]
    J. L. Sanders Jr., Nonlinear theories for thin shells, Q. Appl. Math. 21, 21 (1963)
    [32]
    W. T. Koiter, General equations of elastic stability for thin shells, in Symposium on the Theory of Shells to Honor Lloyd Hamilton Donnett (1967), pp. 187-230
    [33]
    B. Budiansky, Notes on nonlinear shell theory, J. Appl. Mech. 35, 393 (1968).
    [34]
    M. N. Isabel Figueiredo, Local existence and regularity of the solution of the nonlinear thin shell model of Donnell-Mushtari-Vlasov, Appl. Anal. 36, 221 (1990).
    [35]
    C. P. Ellinas, and J. G. A. Croll, Elastic-plastic buckling design of cylindrical shells subject to combined axial compression and pressure loading, Int. J. Solids Struct. 22, 1007 (1986).
    [36]
    S. Yamada, and J. G. A. Croll, Contributions to understanding the behavior of axially compressed cylinders, J. Appl. Mech. 66, 299 (1999).
    [37]
    J. G. A. Croll, and C. P. Ellinas, Reduced stiffness axial load buckling of cylinders, Int. J. Solids Struct. 19, 461 (1983).
    [38]
    E. M. Sosa, L. A. Godoy, and J. G. A. Croll, Computation of lower-bound elastic buckling loads using general-purpose finite element codes, Comput. Struct. 84, 1934 (2006).
    [39]
    S. Yamada, and J. G. A. Croll, Buckling behavior of pressure loaded cylindrical panels, J. Eng. Mech. 115, 327 (1989).
    [40]
    J. G. A. Croll, Towards a rationally based elastic-plastic shell buckling design methodology, Thin-Walled Struct. 23, 67 (1995).
    [41]
    G. M. Zintilis, and J. G. A. Croll, Pressure buckling of end supported shells of revolution, Eng. Struct. 4, 222 (1982).
    [42]
    S. Yamada, and J. G. A. Croll, Buckling and post-buckling characteristics of pressure-loaded cylinders, J. Appl. Mech. 60, 290 (1993).
    [43]
    J. G. A. Croll, and R. C. Batista, Explicit lower bounds for the buckling of axially loaded cylinders, Int. J. Mech. Sci. 23, 331 (1981).
    [44]
    X. Ma, P. Hao, F. Wang, and B. Wang, Incomplete reduced stiffness method for imperfection sensitivity of cylindrical shells, Thin-Walled Struct. 157, 107148 (2020).
    [45]
    E. Chater, J. W. Hutchinson, K. W. Neale, Buckle propagation on a beam on a nonlinear elastic foundation, in Collapse: The Buckling of Structures in Theory and Practice, edited by J. M. T. Thompson, and J. W. Hunt (Cambridge University Press, Cambridge, 1983), pp. 31-41
    [46]
    G. W. Hunt, Reflections and symmetries in space and time, IMA J. Appl. Math. 76, 2 (2011).
    [47]
    G. W. Hunt, G. J. Lord, and M. A. Peletier, Cylindrical shell buckling: a characterization of localization and periodicity, Discret. Contin. Dyn. Syst.-B 3, 505 (2003).
    [48]
    G. W. Hunt, M. A. Peletier, A. R. Champneys, P. D. Woods, M. Ahmer Wadee, C. J. Budd, and G. J. Lord, Cellular buckling in long structures, Nonlinear Dyn. 21, 3 (2000).
    [49]
    G. W. Hunt, and E. L. Neto, Maxwell critical loads for axially loaded cylindrical shells, J. Appl. Mech. 60, 702 (1993).
    [50]
    G. W. Hunt, H. M. Bolt, and J. M. T. Thompson, Structural localization phenomena and the dynamical phase-space analogy, Proc. R. Soc. Lond. A 425, 245 (1989).
    [51]
    C. J. Budd, G. W. Hunt, and R. Kuske, Asymptotics of cellular buckling close to the Maxwell load, Proc. R. Soc. Lond. A 457, 2935 (2001).
    [52]
    J. M. T. Thompson, and J. Sieber, Shock-sensitivity in shell-like structures: with simulations of spherical shell buckling, Int. J. Bifurcat. Chaos 26, 1630003 (2016).
    [53]
    J. M. T. Thompson, and G. H. M. van der Heijden, Quantified “shock-sensitivity” above the Maxwell load, Int. J. Bifurcat. Chaos 24, 1430009 (2014).
    [54]
    J. W. Hutchinson, and J. M. T. Thompson, Imperfections and energy barriers in shell buckling, Int. J. Solids Struct. 148-149, 157 (2018).
    [55]
    J. W. Hutchinson, and J. M. T. Thompson, Nonlinear buckling interaction for spherical shells subject to pressure and probing forces, J. Appl. Mech. 84, 61001 (2017).
    [56]
    W. T. Koiter, The stability of elastic equilibrium. Stab Elastic Equilib (1970)
    [57]
    H. N. R. Wagner, C. Hühne, K. Rohwer, S. Niemann, and M. Wiedemann, Stimulating the realistic worst case buckling scenario of axially compressed unstiffened cylindrical composite shells, Compos. Struct. 160, 1095 (2017).
    [58]
    B. Wang, X. Ma, P. Hao, Y. Sun, K. Tian, G. Li, K. Zhang, L. Jiang, and J. Guo, Improved knockdown factors for composite cylindrical shells with delamination and geometric imperfections, Compos. Part B-Eng. 163, 314 (2019).
    [59]
    Y. Chen, Z. X. Zhu, Y. Q. Li, and T. Tanh, On ultimate bearing capability of sandwich composite cylinders for underwater vehicle under hydrostatic external pressure, J. Nav. Univ. Eng. 2, 83 (2018)
    [60]
    M. W. Hilburger, and J. H. Starnes Jr., Effects of imperfections of the buckling response of composite shells, Thin-Walled Struct. 42, 369 (2004).
    [61]
    B. Wang, K. Du, P. Hao, C. Zhou, K. Tian, S. Xu, Y. Ma, and X. Zhang, Numerically and experimentally predicted knockdown factors for stiffened shells under axial compression, Thin-Walled Struct. 109, 13 (2016).
    [62]
    B. Wang, S. Zhu, P. Hao, X. Bi, K. Du, B. Chen, X. Ma, and Y. J. Chao, Buckling of quasi-perfect cylindrical shell under axial compression: a combined experimental and numerical investigation, Int. J. Solids Struct. 130-131, 232 (2018).
    [63]
    J. Arbocz, The Imperfection Data Bank, a Mean to Obtain Realistic Buckling Loads (Springer, Berlin, Heidelberg, 1982)
    [64]
    Z. Chen, H. Fan, J. Cheng, P. Jiao, F. Xu, and C. Zheng, Buckling of cylindrical shells with measured settlement under axial compression, Thin-Walled Struct. 123, 351 (2018).
    [65]
    J. Arbocz, and H. Abramovich, The initial imperfection data bank at the Delft University of Technology: Part I, Technical Report LR-290 (Delft University of Technology, 1979)
    [66]
    R. Dancy, and D. Jacobs, The initial imperfection data bank at the Delft University of Technology: Part II, Technical Report LR-559 (Delft University of Technology, 1988)
    [67]
    A. W. H. Klompé, and P. C. den Reyer, The initial imperfection data bank at the Delft University of Technology: Part III, Technical Report LR-568 (Delft University of Technology, 1989)
    [68]
    S. G. P. Castro, R. Zimmermann, M. A. Arbelo, R. Khakimova, M. W. Hilburger, and R. Degenhardt, Geometric imperfections and lower-bound methods used to calculate knock-down factors for axially compressed composite cylindrical shells, Thin-Walled Struct. 74, 118 (2014).
    [69]
    D. B. Muggeridge, and R. C. Tennyson, Buckling of axisymmetric imperfect circular cylindrical shells underaxial compression, AIAA J. 7, 2127 (1969).
    [70]
    C. Hühne, R. Rolfes, and J. Tessmer, A new approach for robust design of composite cylindrical shells under axial compression, in Proceedings of the European Conference on Spacecraft Structures, Materials and Mechanical Testing 2005 (ESA SP-581) (Noordwijk, 2015), p. 141
    [71]
    H. N. R. Wagner, C. Hühne, and S. Niemann, Constant single-buckle imperfection principle to determine a lower bound for the buckling load of unstiffened composite cylinders under axial compression, Compos. Struct. 139, 120 (2016).
    [72]
    M. A. Arbelo, R. Degenhardt, S. G. P. Castro, and R. Zimmermann, Numerical characterization of imperfection sensitive composite structures, Compos. Struct. 108, 295 (2014).
    [73]
    B. Wang, P. Hao, G. Li, Y. Fang, X. Wang, and X. Zhang, Determination of realistic worst imperfection for cylindrical shells using surrogate model, Struct. Multidisc. Optim. 48, 777 (2013).
    [74]
    C. Hühne, R. Rolfes, E. Breitbach, and J. Teßmer, Robust design of composite cylindrical shells under axial compression—simulation and validation, Thin-Walled Struct. 46, 947 (2008).
    [75]
    P. Błażejewski, J. Marcinowski, and M. Rotter, 04.21: Buckling of externally pressurised spherical shells: experimental results compared with recent design recommendations, Ce/Papers 1, 1010 (2017).
    [76]
    R. C. Batista, and J. G. A. Croll, A design approach for unstiffened cylindrical shells under external pressure, in Proceedings of the International Conference on Thin Walled Structures (Glasgow, 1979)
    [77]
    P. Hao, B. Wang, G. Li, Z. Meng, K. Tian, D. Zeng, and X. Tang, Worst multiple perturbation load approach of stiffened shells with and without cutouts for improved knockdown factors, Thin-Walled Struct. 82, 321 (2014).
    [78]
    K. Tian, B. Wang, P. Hao, and A. M. Waas, A high-fidelity approximate model for determining lower-bound buckling loads for stiffened shells, Int. J. Solids Struct. 148-149, 14 (2018).
    [79]
    P. Hao, B. Wang, K. Tian, K. Du, and X. Zhang, Influence of imperfection distributions for cylindrical stiffened shells with weld lands, Thin-Walled Struct. 93, 177 (2015).
    [80]
    P. Hao, B. Wang, K. Du, G. Li, K. Tian, Y. Sun, and Y. Ma, Imperfection-insensitive design of stiffened conical shells based on equivalent multiple perturbation load approach, Compos. Struct. 136, 405 (2016).
    [81]
    B. Wang, K. Du, P. Hao, K. Tian, Y. J. Chao, L. Jiang, S. Xu, and X. Zhang, Experimental validation of cylindrical shells under axial compression for improved knockdown factors, Int. J. Solids Struct. 164, 37 (2019).
    [82]
    H. N. R. Wagner, E. M. Sosa, T. Ludwig, J. G. A. Croll, and C. Hühne, Robust design of imperfection sensitive thin-walled shells under axial compression, bending or external pressure, Int. J. Mech. Sci. 156, 205 (2019).
    [83]
    E. R. Lancaster, C. R. Calladine, and S. C. Palmer, Paradoxical buckling behaviour of a thin cylindrical shell under axial compression, Int. J. Mech. Sci. 42, 843 (2000).
    [84]
    M. Rastgar, and H. Showkati, Buckling behavior of cylindrical steel tanks with concavity of vertical weld line imperfection, J. Constr. Steel Res. 145, 289 (2018).
    [85]
    D. Zhang, Z. Chen, Y. Li, P. Jiao, H. Ma, P. Ge, and Y. Gu, Lower-bound axial buckling load prediction for isotropic cylindrical shells using probabilistic random perturbation load approach, Thin-Walled Struct. 155, 106925 (2020).
    [86]
    P. Hao, X. Yuan, C. Liu, B. Wang, H. Liu, G. Li, and F. Niu, An integrated framework of exact modeling, isogeometric analysis and optimization for variable-stiffness composite panels, Comput. Methods Appl. Mech. Eng. 339, 205 (2018).
    [87]
    P. Hao, D. C. Liu, K. P. Zhang, Y. Yuan, B. Wang, G. Li, and X. Zhang, Intelligent layout design of curvilinearly stiffened panels via deep learning-based method, Mater. Des. 197, 109180 (2021).
    [88]
    P. Hao, Y. T. Wang, R. Ma, H. L. Liu, B. Wang, and G. Li, A new reliability-based design optimization framework using isogeometric analysis, Comput. Methods Appl. Mech. Eng. 345, 476 (2019).
    [89]
    G. N. Karam, and L. J. Gibson, Elastic buckling of cylindrical shells with elastic cores—II. Experiments, Int. J. Solids Struct. 32, 1285 (1995).
    [90]
    E. T. Hambly, and C. R. Calladine, Buckling experiments on damaged cylindrical shells, Int. J. Solids Struct. 33, 3539 (1996).
    [91]
    C. Bisagni, and P. Cordisco, Post-buckling and collapse experiments of stiffened composite cylindrical shells subjected to axial loading and torque, Compos. Struct. 73, 138 (2006).
    [92]
    R. Khakimova, S. G. P. Castro, D. Wilckens, K. Rohwer, and R. Degenhardt, Buckling of axially compressed CFRP cylinders with and without additional lateral load: experimental and numerical investigation, Thin-Walled Struct. 119, 178 (2017).
    [93]
    G. Totaro, and F. De Nicola, Recent advance on design and manufacturing of composite anisogrid structures for space launchers, Acta Astronaut. 81, 570 (2012).
    [94]
    H. Fan, D. Fang, L. Chen, Z. Dai, and W. Yang, Manufacturing and testing of a CFRC sandwich cylinder with Kagome cores, Compos. Sci. Tech. 69, 2695 (2009).
    [95]
    L. Chen, H. Fan, F. Sun, L. Zhao, and D. Fang, Improved manufacturing method and mechanical performances of carbon fiber reinforced lattice-core sandwich cylinder, Thin-Walled Struct. 68, 75 (2013).
    [96]
    W. Li, F. Sun, P. Wang, H. Fan, and D. Fang, A novel carbon fiber reinforced lattice truss sandwich cylinder: fabrication and experiments, Compos. Part A-Appl. Sci. Manuf. 81, 313 (2016).
    [97]
    M. Li, F. Sun, C. Lai, H. Fan, B. Ji, X. Zhang, D. Liu, and D. Fang, Fabrication and testing of composite hierarchical isogrid stiffened cylinder, Compos. Sci. Tech. 157, 152 (2018).
    [98]
    W. Li, Q. Zheng, H. Fan, and B. Ji, Fabrication and mechanical testing of ultralight folded lattice-core sandwich cylinders, Engineering 6, 196 (2020).
    [99]
    M. Rouhi, H. Ghayoor, J. Fortin-Simpson, T. T. Zacchia, S. V. Hoa, and M. Hojjati, Design, manufacturing, and testing of a variable stiffness composite cylinder, Compos. Struct. 184, 146 (2018).
    [100]
    P. Jiao, Z. Chen, H. Ma, P. Ge, Y. Gu, and H. Miao, Buckling behaviors of thin-walled cylindrical shells under localized axial compression loads, Part 1: experimental study, Thin-Walled Struct. 166, 108118 (2021).
    [101]
    P. Jiao, Z. Chen, H. Ma, P. Ge, Y. Gu, and H. Miao, Buckling behaviors of thin-walled cylindrical shells under localized axial compression loads, Part 2: numerical study, Thin-Walled Struct. 169, 108330 (2021).
    [102]
    M. W. Hilburger, M. C. Lindell, W. A. Waters, and N. W. Gardner, Test and analysis of buckling-critical stiffened metallic launch vehicle cylinders, in 2018 AIAA/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference (Kissimmee, 2018)
    [103]
    M. T. Rudd, M. W. Hilburger, A. E. Lovejoy, M. C. Lindell, N. W. Gardner, and M. R. Schultz, Buckling response of a large-scale, seamless, orthogrid-stiffened metallic cylinder, in 2018 AIAA/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference (Kissimmee, 2018)
    [104]
    A. Przekop, M. R. Schultz, and M. W. Hilburger, Design of buckling-critical large-scale sandwich composite cylinder test articles, in 2018 AIAA/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference (Kissimmee, 2018)
    [105]
    J. M. T. Thompson, J. W. Hutchinson, and J. Sieber, Probing shells against buckling: a nondestructive technique for laboratory testing, Int. J. Bifurcat. Chaos 27, 1730048 (2017).
    [106]
    F. Franzoni, F. Odermann, E. Lanbans, C. Bisagni, M. Andrés Arbelo, and R. Degenhardt, Experimental validation of the vibration correlation technique robustness to predict buckling of unstiffened composite cylindrical shells, Compos. Struct. 224, 111107 (2019).
    [107]
    L. A. Harris, H. S. Suer, W. T. Skene, and R. J. Benjamin, The stability of thin-walled unstiffened circular cylinders under axial compression including the effects of internal pressure, J. Aeronaut. Sci. 24, 587 (1957).
    [108]
    O. G. S. Ricardo, An experimental investigation of the radial displacements of a thin-walled cylinder, Technical Report, NASA-CR-934 (National Aeronautics and Space Administration, 1967)
    [109]
    R. D. Caswell, D. B. Muggeridge, and R. C. Tennyson, Buckling of circular cylindrical shells having axisymmetric imperfection distributions, AIAA J. 9, 924 (1971).
    [110]
    J. W. Hutchinson, D. B. Muggeridge, and R. C. Tennyson, Effect of a local axisymmetric imperfection on the buckling behavior of a circular cylindrical shell under axial compression, AIAA J. 9, 48 (1971).
    [111]
    R. L. Carri, Buckling behavior of composite cylinders subjected to compressive loading, Technical Report, NASA-CR-132264 (National Aeronautics and Space Administration, 1973)
    [112]
    D. J. Wilkins, and T. S. Love, Combined compression-torsion buckling tests of laminated composite cylindrical shells, J. Aircraft 12, 885 (1975).
    [113]
    C. T. Herakovich, Theoretical-experimental correlation for buckling of composite cylinders under combined compression and torsion, NASA-CR-157358 (National Aeronautics and Space Administration, 1978)
    [114]
    M. Uemura, and H. Kasuya, Coupling effect on axial compressive buckling of laminated composite cylindrical shells, Prog. Sci. Eng. Compos., 583 (1982)
    [115]
    Y. Hirano, Optimization of laminated composite cylindrical shells for axial buckling, Jpn. Soc. Aeronaut. Space Sci. Trans. 26, 154 (1983)
    [116]
    R. C. Tennyson, and J. S. Hansen, Optimum design for buckling of laminated cylinders, in Collapse: The Buckling of Structures in Theory and Practice, edited by J. M. T. Thompson, and J. W. Hunt (Cambridge University Press, Cambridge, 1983)
    [117]
    S. Kobayashi, H. Seko, and K. Koyama, Compressive buckling of CFRP circular cylindrical shells. I—Theoretical analysis and experiment, J. Jpn. Soc. Aeronaut. Space Sci. 32, 111 (1984).
    [118]
    C. G. Foster, Axial compression buckling of conical and cylindrical shells, Exp. Mech. 27, 255 (1987).
    [119]
    G. Sun, Optimization of laminated cylinders for buckling (University of Toronto, 1987)
    [120]
    B. Geier, H. Klein, and R. Zimmermann, Buckling tests with axially compressed unstiffened cylindrical shells made from CFRP (DLR, 1991)
    [121]
    V. Giavotto, C. Poggi, M. Chryssanthopoulos, and P. Dowling, Buckling behaviour of composite shells under combined loading, in Buckling of Shell Structures, on Land, in the Sea and in the Air, edited by J. F. Jullien (CRC Press, Boca Raton, 1991), pp. 53-60
    [122]
    S. Krishnakumar, and C. G. Foster, Axial load capacity of cylindrical shells with local geometric defects, Exp. Mech. 31, 104 (1991).
    [123]
    W. A. Waters, Effects of initial geometric imperfections on the behavior of graphite-epoxy cylinders loaded in compression (1996)
    [124]
    M. H. Schneider Jr., Investigation of the stability of imperfect cylinders using structural models, Eng. Struct. 18, 792 (1996).
    [125]
    C. Bisagni, Experimental buckling of thin composite cylinders in compression, AIAA J. 37, 276 (1999).
    [126]
    T. D. Kim, Fabrication and testing of composite isogrid stiffened cylinder, Compos. Struct. 45, 1 (1999).
    [127]
    H. R. Meyer-Piening, M. Farshad, B. Geier, and R. Zimmermann, Buckling loads of CFRP composite cylinders under combined axial and torsion loading—experiments and computations, Compos. Struct. 53, 427 (2001).
    [128]
    C. Bisagni, and P. Cordisco, An experimental investigation into the buckling and post-buckling of CFRP shells under combined axial and torsion loading, Compos. Struct. 60, 391 (2003).
    [129]
    M. W. Hilburger, M. P. Nemeth, and J. H. Starnes Jr., Shell buckling design criteria based on manufacturing imperfection signatures, AIAA J. 44, 654 (2006).
    [130]
    M. W. Hilburger, W. A. Waters Jr., W. T. Haynie, Buckling test results from the 8-foot-diameter orthogrid-stiffened cylinder test article TA01 (Test Dates: 19-21 November 2008), Technical Report, NASA/TP-2015-218785 (National Aeronautics and Space Administration, 2015)
    [131]
    R. Degenhardt, A. Kling, A. Bethge, J. Orf, L. Kärger, R. Zimmermann, K. Rohwer, and A. Calvi, Investigations on imperfection sensitivity and deduction of improved knock-down factors for unstiffened CFRP cylindrical shells, Compos. Struct. 92, 1939 (2010).
    [132]
    W. T. Haynie, M. W. Hilburger, M. Bogge, and B. Kriegesmann, Validation of lower-bound estimates for compression-loaded cylindrical shells, in 53rd AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics and Materials Conference (Honolulu, 2012)
    [133]
    R. S. Priyadarsini, V. Kalyanaraman, and S. M. Srinivasan, Numerical and experimental study of buckling of advanced fiber composite cylinders under axial compression, Int. J. Str. Stab. Dyn. 12, 1250028 (2012).
    [134]
    C. Bisagni, Composite cylindrical shells under static and dynamic axial loading: an experimental campaign, Prog. Aerosp. Sci. 78, 107 (2015).
    [135]
    C. Schillo, D. Röstermundt, and D. Krause, Experimental and numerical study on the influence of imperfections on the buckling load of unstiffened CFRP shells, Compos. Struct. 131, 128 (2015).
    [136]
    K. Kalnins, M. Arbelo, O. Ozolins, S. Castro, and R. Degenhard, Numerical characterization of the knock-down factor on unstiffened cylindrical shells with initial geometric imperfections, in ICCM International Conferences on Composite Materials (2015)
    [137]
    A. Takano, Buckling experiment on anisotropic long and short cylinders, Adv. Technol. Innov. 1, 25 (2016)
    [138]
    H. Wu, C. Lai, F. Sun, M. Li, B. Ji, W. Wei, D. Liu, X. Zhang, and H. Fan, Carbon fiber reinforced hierarchical orthogrid stiffened cylinder: fabrication and testing, Acta Astronaut. 145, 268 (2018).
  • 加载中

Catalog

    Figures(11)  / Tables(2)

    Article Metrics

    Article views(116) PDF downloads(0) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return