Citation: | B. Wang, P. Hao, X. Ma, and K. Tian,Knockdown factor of buckling load for axially compressed cylindrical shells: state of the art and new perspectives. Acta Mech. Sin., 2022, 38, |
[1] |
|
[2] |
|
[3] |
L. H. Donnell, and C. C. Wan, Effect of imperfections on buckling of thin cylinders and columns under axial compression, J. Appl. Mech. 17, 73 (1950).
|
[4] |
|
[5] |
|
[6] |
|
[7] |
B. O. Almroth, A. B. Burns, and E. V. Pittner, Design criteria for axially loaded cylindrical shells, J. Spacecraft Rockets 7, 714 (1971).
|
[8] |
A. Takano, Statistical knockdown factors of buckling anisotropic cylinders under axial compression, J. Appl. Mech. 79, 051004 (2012).
|
[9] |
|
[10] |
H. N. R. Wagner, C. Hühne, S. Niemann, K. Tian, B. Wang, and P. Hao, Robust knockdown factors for the design of cylindrical shells under axial compression: analysis and modeling of stiffened and unstiffened cylinders, Thin-Walled Struct. 127, 629 (2018).
|
[11] |
H. N. R. Wagner, C. Hühne, and S. Niemann, Robust knockdown factors for the design of axially loaded cylindrical and conical composite shells—development and validation, Compos. Struct. 173, 281 (2017).
|
[12] |
Z. R. Tahir, and P. Mandal, Artificial neural network prediction of buckling load of thin cylindrical shells under axial compression, Eng. Struct. 152, 843 (2017).
|
[13] |
|
[14] |
|
[15] |
|
[16] |
J. G. Teng, Buckling of thin shells: recent advances and trends, Appl. Mech. Rev. 49, 263 (1996).
|
[17] |
J. Arbocz, and J. H. Starnes Jr., Future directions and challenges in shell stability analysis, Thin-Walled Struct. 40, 729 (2002).
|
[18] |
H. Schmidt, Stability of steel shell structures, J. Constr. Steel Res. 55, 159 (2000).
|
[19] |
|
[20] |
|
[21] |
B. L. O. Edlund, Buckling of metallic shells: buckling and postbuckling behaviour of isotropic shells, especially cylinders, Struct. Control Health Monit. 14, 693 (2007).
|
[22] |
|
[23] |
|
[24] |
F. S. Liguori, G. Zucco, A. Madeo, D. Magisano, L. Leonetti, G. Garcea, and P. M. Weaver, Postbuckling optimisation of a variable angle tow composite wingbox using a multi-modal Koiter approach, Thin-Walled Struct. 138, 183 (2019).
|
[25] |
A. Madeo, R. M. J. Groh, G. Zucco, P. M. Weaver, G. Zagari, and R. Zinno, Post-buckling analysis of variable-angle tow composite plates using Koiter’s approach and the finite element method, Thin-Walled Struct. 110, 1 (2017).
|
[26] |
G. Garcea, F. S. Liguori, L. Leonetti, D. Magisano, and A. Madeo, Accurate and efficient a posteriori, Int. J. Numer. Meth. Engng. 112, 1154 (2017).
|
[27] |
R. J. Mania, A. Madeo, G. Zucco, and T. Kubiak, Imperfection sensitivity of post-buckling of FML channel section column, Thin-Walled Struct. 114, 32 (2017).
|
[28] |
F. S. Liguori, A. Madeo, D. Magisano, L. Leonetti, and G. Garcea, Post-buckling optimisation strategy of imperfection sensitive composite shells using Koiter method and Monte Carlo simulation, Compos. Struct. 192, 654 (2018).
|
[29] |
K. Liang, M. Ruess, and M. Abdalla, An eigenanalysis-based bifurcation indicator proposed in the framework of a reduced-order modeling technique for non-linear structural analysis, Int. J. Non-Linear Mech. 81, 129 (2016).
|
[30] |
K. Liang, C. Yang, and Q. Sun, A smeared stiffener based reduced-order modelling method for buckling analysis of isogrid-stiffened cylinder, Appl. Math. Model. 77, 756 (2020).
|
[31] |
|
[32] |
|
[33] |
B. Budiansky, Notes on nonlinear shell theory, J. Appl. Mech. 35, 393 (1968).
|
[34] |
M. N. Isabel Figueiredo, Local existence and regularity of the solution of the nonlinear thin shell model of Donnell-Mushtari-Vlasov, Appl. Anal. 36, 221 (1990).
|
[35] |
C. P. Ellinas, and J. G. A. Croll, Elastic-plastic buckling design of cylindrical shells subject to combined axial compression and pressure loading, Int. J. Solids Struct. 22, 1007 (1986).
|
[36] |
S. Yamada, and J. G. A. Croll, Contributions to understanding the behavior of axially compressed cylinders, J. Appl. Mech. 66, 299 (1999).
|
[37] |
J. G. A. Croll, and C. P. Ellinas, Reduced stiffness axial load buckling of cylinders, Int. J. Solids Struct. 19, 461 (1983).
|
[38] |
E. M. Sosa, L. A. Godoy, and J. G. A. Croll, Computation of lower-bound elastic buckling loads using general-purpose finite element codes, Comput. Struct. 84, 1934 (2006).
|
[39] |
S. Yamada, and J. G. A. Croll, Buckling behavior of pressure loaded cylindrical panels, J. Eng. Mech. 115, 327 (1989).
|
[40] |
J. G. A. Croll, Towards a rationally based elastic-plastic shell buckling design methodology, Thin-Walled Struct. 23, 67 (1995).
|
[41] |
G. M. Zintilis, and J. G. A. Croll, Pressure buckling of end supported shells of revolution, Eng. Struct. 4, 222 (1982).
|
[42] |
S. Yamada, and J. G. A. Croll, Buckling and post-buckling characteristics of pressure-loaded cylinders, J. Appl. Mech. 60, 290 (1993).
|
[43] |
J. G. A. Croll, and R. C. Batista, Explicit lower bounds for the buckling of axially loaded cylinders, Int. J. Mech. Sci. 23, 331 (1981).
|
[44] |
X. Ma, P. Hao, F. Wang, and B. Wang, Incomplete reduced stiffness method for imperfection sensitivity of cylindrical shells, Thin-Walled Struct. 157, 107148 (2020).
|
[45] |
|
[46] |
G. W. Hunt, Reflections and symmetries in space and time, IMA J. Appl. Math. 76, 2 (2011).
|
[47] |
G. W. Hunt, G. J. Lord, and M. A. Peletier, Cylindrical shell buckling: a characterization of localization and periodicity, Discret. Contin. Dyn. Syst.-B 3, 505 (2003).
|
[48] |
G. W. Hunt, M. A. Peletier, A. R. Champneys, P. D. Woods, M. Ahmer Wadee, C. J. Budd, and G. J. Lord, Cellular buckling in long structures, Nonlinear Dyn. 21, 3 (2000).
|
[49] |
G. W. Hunt, and E. L. Neto, Maxwell critical loads for axially loaded cylindrical shells, J. Appl. Mech. 60, 702 (1993).
|
[50] |
G. W. Hunt, H. M. Bolt, and J. M. T. Thompson, Structural localization phenomena and the dynamical phase-space analogy, Proc. R. Soc. Lond. A 425, 245 (1989).
|
[51] |
C. J. Budd, G. W. Hunt, and R. Kuske, Asymptotics of cellular buckling close to the Maxwell load, Proc. R. Soc. Lond. A 457, 2935 (2001).
|
[52] |
J. M. T. Thompson, and J. Sieber, Shock-sensitivity in shell-like structures: with simulations of spherical shell buckling, Int. J. Bifurcat. Chaos 26, 1630003 (2016).
|
[53] |
J. M. T. Thompson, and G. H. M. van der Heijden, Quantified “shock-sensitivity” above the Maxwell load, Int. J. Bifurcat. Chaos 24, 1430009 (2014).
|
[54] |
J. W. Hutchinson, and J. M. T. Thompson, Imperfections and energy barriers in shell buckling, Int. J. Solids Struct. 148-149, 157 (2018).
|
[55] |
J. W. Hutchinson, and J. M. T. Thompson, Nonlinear buckling interaction for spherical shells subject to pressure and probing forces, J. Appl. Mech. 84, 61001 (2017).
|
[56] |
|
[57] |
H. N. R. Wagner, C. Hühne, K. Rohwer, S. Niemann, and M. Wiedemann, Stimulating the realistic worst case buckling scenario of axially compressed unstiffened cylindrical composite shells, Compos. Struct. 160, 1095 (2017).
|
[58] |
B. Wang, X. Ma, P. Hao, Y. Sun, K. Tian, G. Li, K. Zhang, L. Jiang, and J. Guo, Improved knockdown factors for composite cylindrical shells with delamination and geometric imperfections, Compos. Part B-Eng. 163, 314 (2019).
|
[59] |
|
[60] |
M. W. Hilburger, and J. H. Starnes Jr., Effects of imperfections of the buckling response of composite shells, Thin-Walled Struct. 42, 369 (2004).
|
[61] |
B. Wang, K. Du, P. Hao, C. Zhou, K. Tian, S. Xu, Y. Ma, and X. Zhang, Numerically and experimentally predicted knockdown factors for stiffened shells under axial compression, Thin-Walled Struct. 109, 13 (2016).
|
[62] |
B. Wang, S. Zhu, P. Hao, X. Bi, K. Du, B. Chen, X. Ma, and Y. J. Chao, Buckling of quasi-perfect cylindrical shell under axial compression: a combined experimental and numerical investigation, Int. J. Solids Struct. 130-131, 232 (2018).
|
[63] |
|
[64] |
Z. Chen, H. Fan, J. Cheng, P. Jiao, F. Xu, and C. Zheng, Buckling of cylindrical shells with measured settlement under axial compression, Thin-Walled Struct. 123, 351 (2018).
|
[65] |
|
[66] |
|
[67] |
|
[68] |
S. G. P. Castro, R. Zimmermann, M. A. Arbelo, R. Khakimova, M. W. Hilburger, and R. Degenhardt, Geometric imperfections and lower-bound methods used to calculate knock-down factors for axially compressed composite cylindrical shells, Thin-Walled Struct. 74, 118 (2014).
|
[69] |
D. B. Muggeridge, and R. C. Tennyson, Buckling of axisymmetric imperfect circular cylindrical shells underaxial compression, AIAA J. 7, 2127 (1969).
|
[70] |
|
[71] |
H. N. R. Wagner, C. Hühne, and S. Niemann, Constant single-buckle imperfection principle to determine a lower bound for the buckling load of unstiffened composite cylinders under axial compression, Compos. Struct. 139, 120 (2016).
|
[72] |
M. A. Arbelo, R. Degenhardt, S. G. P. Castro, and R. Zimmermann, Numerical characterization of imperfection sensitive composite structures, Compos. Struct. 108, 295 (2014).
|
[73] |
B. Wang, P. Hao, G. Li, Y. Fang, X. Wang, and X. Zhang, Determination of realistic worst imperfection for cylindrical shells using surrogate model, Struct. Multidisc. Optim. 48, 777 (2013).
|
[74] |
C. Hühne, R. Rolfes, E. Breitbach, and J. Teßmer, Robust design of composite cylindrical shells under axial compression—simulation and validation, Thin-Walled Struct. 46, 947 (2008).
|
[75] |
P. Błażejewski, J. Marcinowski, and M. Rotter, 04.21: Buckling of externally pressurised spherical shells: experimental results compared with recent design recommendations, Ce/Papers 1, 1010 (2017).
|
[76] |
|
[77] |
P. Hao, B. Wang, G. Li, Z. Meng, K. Tian, D. Zeng, and X. Tang, Worst multiple perturbation load approach of stiffened shells with and without cutouts for improved knockdown factors, Thin-Walled Struct. 82, 321 (2014).
|
[78] |
K. Tian, B. Wang, P. Hao, and A. M. Waas, A high-fidelity approximate model for determining lower-bound buckling loads for stiffened shells, Int. J. Solids Struct. 148-149, 14 (2018).
|
[79] |
P. Hao, B. Wang, K. Tian, K. Du, and X. Zhang, Influence of imperfection distributions for cylindrical stiffened shells with weld lands, Thin-Walled Struct. 93, 177 (2015).
|
[80] |
P. Hao, B. Wang, K. Du, G. Li, K. Tian, Y. Sun, and Y. Ma, Imperfection-insensitive design of stiffened conical shells based on equivalent multiple perturbation load approach, Compos. Struct. 136, 405 (2016).
|
[81] |
B. Wang, K. Du, P. Hao, K. Tian, Y. J. Chao, L. Jiang, S. Xu, and X. Zhang, Experimental validation of cylindrical shells under axial compression for improved knockdown factors, Int. J. Solids Struct. 164, 37 (2019).
|
[82] |
H. N. R. Wagner, E. M. Sosa, T. Ludwig, J. G. A. Croll, and C. Hühne, Robust design of imperfection sensitive thin-walled shells under axial compression, bending or external pressure, Int. J. Mech. Sci. 156, 205 (2019).
|
[83] |
E. R. Lancaster, C. R. Calladine, and S. C. Palmer, Paradoxical buckling behaviour of a thin cylindrical shell under axial compression, Int. J. Mech. Sci. 42, 843 (2000).
|
[84] |
M. Rastgar, and H. Showkati, Buckling behavior of cylindrical steel tanks with concavity of vertical weld line imperfection, J. Constr. Steel Res. 145, 289 (2018).
|
[85] |
D. Zhang, Z. Chen, Y. Li, P. Jiao, H. Ma, P. Ge, and Y. Gu, Lower-bound axial buckling load prediction for isotropic cylindrical shells using probabilistic random perturbation load approach, Thin-Walled Struct. 155, 106925 (2020).
|
[86] |
P. Hao, X. Yuan, C. Liu, B. Wang, H. Liu, G. Li, and F. Niu, An integrated framework of exact modeling, isogeometric analysis and optimization for variable-stiffness composite panels, Comput. Methods Appl. Mech. Eng. 339, 205 (2018).
|
[87] |
P. Hao, D. C. Liu, K. P. Zhang, Y. Yuan, B. Wang, G. Li, and X. Zhang, Intelligent layout design of curvilinearly stiffened panels via deep learning-based method, Mater. Des. 197, 109180 (2021).
|
[88] |
P. Hao, Y. T. Wang, R. Ma, H. L. Liu, B. Wang, and G. Li, A new reliability-based design optimization framework using isogeometric analysis, Comput. Methods Appl. Mech. Eng. 345, 476 (2019).
|
[89] |
G. N. Karam, and L. J. Gibson, Elastic buckling of cylindrical shells with elastic cores—II. Experiments, Int. J. Solids Struct. 32, 1285 (1995).
|
[90] |
E. T. Hambly, and C. R. Calladine, Buckling experiments on damaged cylindrical shells, Int. J. Solids Struct. 33, 3539 (1996).
|
[91] |
C. Bisagni, and P. Cordisco, Post-buckling and collapse experiments of stiffened composite cylindrical shells subjected to axial loading and torque, Compos. Struct. 73, 138 (2006).
|
[92] |
R. Khakimova, S. G. P. Castro, D. Wilckens, K. Rohwer, and R. Degenhardt, Buckling of axially compressed CFRP cylinders with and without additional lateral load: experimental and numerical investigation, Thin-Walled Struct. 119, 178 (2017).
|
[93] |
G. Totaro, and F. De Nicola, Recent advance on design and manufacturing of composite anisogrid structures for space launchers, Acta Astronaut. 81, 570 (2012).
|
[94] |
H. Fan, D. Fang, L. Chen, Z. Dai, and W. Yang, Manufacturing and testing of a CFRC sandwich cylinder with Kagome cores, Compos. Sci. Tech. 69, 2695 (2009).
|
[95] |
L. Chen, H. Fan, F. Sun, L. Zhao, and D. Fang, Improved manufacturing method and mechanical performances of carbon fiber reinforced lattice-core sandwich cylinder, Thin-Walled Struct. 68, 75 (2013).
|
[96] |
W. Li, F. Sun, P. Wang, H. Fan, and D. Fang, A novel carbon fiber reinforced lattice truss sandwich cylinder: fabrication and experiments, Compos. Part A-Appl. Sci. Manuf. 81, 313 (2016).
|
[97] |
M. Li, F. Sun, C. Lai, H. Fan, B. Ji, X. Zhang, D. Liu, and D. Fang, Fabrication and testing of composite hierarchical isogrid stiffened cylinder, Compos. Sci. Tech. 157, 152 (2018).
|
[98] |
W. Li, Q. Zheng, H. Fan, and B. Ji, Fabrication and mechanical testing of ultralight folded lattice-core sandwich cylinders, Engineering 6, 196 (2020).
|
[99] |
M. Rouhi, H. Ghayoor, J. Fortin-Simpson, T. T. Zacchia, S. V. Hoa, and M. Hojjati, Design, manufacturing, and testing of a variable stiffness composite cylinder, Compos. Struct. 184, 146 (2018).
|
[100] |
P. Jiao, Z. Chen, H. Ma, P. Ge, Y. Gu, and H. Miao, Buckling behaviors of thin-walled cylindrical shells under localized axial compression loads, Part 1: experimental study, Thin-Walled Struct. 166, 108118 (2021).
|
[101] |
P. Jiao, Z. Chen, H. Ma, P. Ge, Y. Gu, and H. Miao, Buckling behaviors of thin-walled cylindrical shells under localized axial compression loads, Part 2: numerical study, Thin-Walled Struct. 169, 108330 (2021).
|
[102] |
|
[103] |
|
[104] |
|
[105] |
J. M. T. Thompson, J. W. Hutchinson, and J. Sieber, Probing shells against buckling: a nondestructive technique for laboratory testing, Int. J. Bifurcat. Chaos 27, 1730048 (2017).
|
[106] |
F. Franzoni, F. Odermann, E. Lanbans, C. Bisagni, M. Andrés Arbelo, and R. Degenhardt, Experimental validation of the vibration correlation technique robustness to predict buckling of unstiffened composite cylindrical shells, Compos. Struct. 224, 111107 (2019).
|
[107] |
L. A. Harris, H. S. Suer, W. T. Skene, and R. J. Benjamin, The stability of thin-walled unstiffened circular cylinders under axial compression including the effects of internal pressure, J. Aeronaut. Sci. 24, 587 (1957).
|
[108] |
|
[109] |
R. D. Caswell, D. B. Muggeridge, and R. C. Tennyson, Buckling of circular cylindrical shells having axisymmetric imperfection distributions, AIAA J. 9, 924 (1971).
|
[110] |
J. W. Hutchinson, D. B. Muggeridge, and R. C. Tennyson, Effect of a local axisymmetric imperfection on the buckling behavior of a circular cylindrical shell under axial compression, AIAA J. 9, 48 (1971).
|
[111] |
|
[112] |
D. J. Wilkins, and T. S. Love, Combined compression-torsion buckling tests of laminated composite cylindrical shells, J. Aircraft 12, 885 (1975).
|
[113] |
|
[114] |
|
[115] |
|
[116] |
|
[117] |
S. Kobayashi, H. Seko, and K. Koyama, Compressive buckling of CFRP circular cylindrical shells. I—Theoretical analysis and experiment, J. Jpn. Soc. Aeronaut. Space Sci. 32, 111 (1984).
|
[118] |
C. G. Foster, Axial compression buckling of conical and cylindrical shells, Exp. Mech. 27, 255 (1987).
|
[119] |
|
[120] |
|
[121] |
|
[122] |
S. Krishnakumar, and C. G. Foster, Axial load capacity of cylindrical shells with local geometric defects, Exp. Mech. 31, 104 (1991).
|
[123] |
|
[124] |
M. H. Schneider Jr., Investigation of the stability of imperfect cylinders using structural models, Eng. Struct. 18, 792 (1996).
|
[125] |
C. Bisagni, Experimental buckling of thin composite cylinders in compression, AIAA J. 37, 276 (1999).
|
[126] |
T. D. Kim, Fabrication and testing of composite isogrid stiffened cylinder, Compos. Struct. 45, 1 (1999).
|
[127] |
H. R. Meyer-Piening, M. Farshad, B. Geier, and R. Zimmermann, Buckling loads of CFRP composite cylinders under combined axial and torsion loading—experiments and computations, Compos. Struct. 53, 427 (2001).
|
[128] |
C. Bisagni, and P. Cordisco, An experimental investigation into the buckling and post-buckling of CFRP shells under combined axial and torsion loading, Compos. Struct. 60, 391 (2003).
|
[129] |
M. W. Hilburger, M. P. Nemeth, and J. H. Starnes Jr., Shell buckling design criteria based on manufacturing imperfection signatures, AIAA J. 44, 654 (2006).
|
[130] |
|
[131] |
R. Degenhardt, A. Kling, A. Bethge, J. Orf, L. Kärger, R. Zimmermann, K. Rohwer, and A. Calvi, Investigations on imperfection sensitivity and deduction of improved knock-down factors for unstiffened CFRP cylindrical shells, Compos. Struct. 92, 1939 (2010).
|
[132] |
|
[133] |
R. S. Priyadarsini, V. Kalyanaraman, and S. M. Srinivasan, Numerical and experimental study of buckling of advanced fiber composite cylinders under axial compression, Int. J. Str. Stab. Dyn. 12, 1250028 (2012).
|
[134] |
C. Bisagni, Composite cylindrical shells under static and dynamic axial loading: an experimental campaign, Prog. Aerosp. Sci. 78, 107 (2015).
|
[135] |
C. Schillo, D. Röstermundt, and D. Krause, Experimental and numerical study on the influence of imperfections on the buckling load of unstiffened CFRP shells, Compos. Struct. 131, 128 (2015).
|
[136] |
|
[137] |
|
[138] |
H. Wu, C. Lai, F. Sun, M. Li, B. Ji, W. Wei, D. Liu, X. Zhang, and H. Fan, Carbon fiber reinforced hierarchical orthogrid stiffened cylinder: fabrication and testing, Acta Astronaut. 145, 268 (2018).
|