Volume 38 Issue 3
Feb 2022
Turn off MathJax
Article Contents
D. Lu, and B. Chen,Coordinated motion of molecular motors on DNA chains with branch topology. Acta Mech. Sin., 2022, 38, http://www.w3.org/1999/xlink' xlink:href='https://doi.org/10.1007/s10409-021-09045-x'>https://doi.org/10.1007/s10409-021-09045-x
Citation: D. Lu, and B. Chen,Coordinated motion of molecular motors on DNA chains with branch topology. Acta Mech. Sin., 2022, 38, http://www.w3.org/1999/xlink" xlink:href="https://doi.org/10.1007/s10409-021-09045-x">https://doi.org/10.1007/s10409-021-09045-x

Coordinated motion of molecular motors on DNA chains with branch topology

doi: 10.1007/s10409-021-09045-x
Funds:

the National Natural Science Foundation of China Grant

More Information
  • Corresponding author: Chen Bin, E-mail address: chenb6@zju.edu.cn (Bin Chen)
  • Accepted Date: 25 Jun 2021
  • Available Online: 01 Aug 2022
  • Publish Date: 16 Feb 2022
  • Issue Publish Date: 01 Mar 2022
  • To understand the macroscopic mechanical behaviors of responsive DNA hydrogels integrated with DNA motors, we constructed a state map for the translocation process of a single FtsKC on a single DNA chain at the molecular level and then investigated the movement of single or multiple FtsKC motors on DNA chains with varied branch topologies. Our studies indicate that multiple FtsKC motors can have coordinated motion, which is mainly due to the force-responsive behavior of individual FtsKC motors. We further suggest the potential application of motors of FtsKC, together with DNA chains of specific branch topology, to serve as strain sensors in hydrogels.

     

  • loading
  • [1]
    C. A. Hong, J. C. Park, H. Na, H. Jeon, and Y. S. Nam, Short DNA-catalyzed formation of quantum dot-DNA hydrogel for enzyme-free femtomolar specific DNA assay, Biosens. Bioelectron. 182, 113110 33812283(2021).
    [2]
    Q. Zhang, X. Liu, L. Duan, and G. Gao, A DNA-inspired hydrogel mechanoreceptor with skin-like mechanical behavior, J. Mater. Chem. A 9, 1835 (2021).
    [3]
    H. S. Kim, N. Abbas, and S. Shin, A rapid diagnosis of SARS-CoV-2 using DNA hydrogel formation on microfluidic pores, Biosens. Bioelectron. 177, 113005 33486135(2021).
    [4]
    F. Mo, K. Jiang, D. Zhao, Y. Wang, J. Song, and W. Tan, DNA hydrogel-based gene editing and drug delivery systems, Adv. Drug Deliver. Rev. 168, 79 32712197(2021).
    [5]
    S. Khajouei, H. Ravan, and A. Ebrahimi, Developing a colorimetric nucleic acid-responsive DNA hydrogel using DNA proximity circuit and catalytic hairpin assembly, Anal. Chim. Acta 1137, 1 33153592(2020).
    [6]
    Y. Bi, X. Du, P. He, C. Wang, C. Liu, and W. Guo, Smart bilayer polyacrylamide/DNA hybrid hydrogel film actuators exhibiting programmable responsive and reversible macroscopic shape deformations, Small 16, 1906998 32985098(2020).
    [7]
    M. L. Zhao, W. J. Zeng, Y. Q. Chai, R. Yuan, and Y. Zhuo, An affinity-enhanced DNA intercalator with intense ECL embedded in DNA hydrogel for biosensing applications, Anal. Chem. 92, 11044 32677426(2020).
    [8]
    N. Xu, N. Ma, X. Yang, G. Ling, J. Yu, and P. Zhang, Preparation of intelligent DNA hydrogel and its applications in biosensing, Eur. Polym. J. 137, 109951 (2020).
    [9]
    X. Gao, X. Li, X. Sun, J. Zhang, Y. Zhao, X. Liu, and F. Li, DNA tetrahedra-cross-linked hydrogel functionalized paper for onsite analysis of DNA methyltransferase activity using a personal glucose meter, Anal. Chem. 92, 4592 32081006(2020).
    [10]
    J. Y. Wang, Q. Y. Guo, Z. Y. Yao, N. Yin, S. Y. Ren, Y. Li, S. Li, Y. Peng, J. L. Bai, B. A. Ning, J. Liang, and Z. X. Gao, A low-field nuclear magnetic resonance DNA-hydrogel nanoprobe for bisphenol A determination in drinking water, Microchim. Acta 187, 333 32415377(2020).
    [11]
    G. Urtel, A. Estevez-Torres, and J. C. Galas, DNA-based long-lived reaction-diffusion patterning in a host hydrogel, Soft Matter 15, 9343 31693052(2019).
    [12]
    Y. Ke, Y. Liu, J. Zhang, and H. Yan, A study of DNA tube formation mechanisms using 4-, 8-, and 12-helix DNA nanostructures, J. Am. Chem. Soc. 128, 4414 16569019(2015).
    [13]
    Y. Lin, X. Wang, Y. Sun, Y. Dai, W. Sun, X. Zhu, H. Liu, R. Han, D. Gao, and C. Luo, A chemiluminescent biosensor for ultrasensitive detection of adenosine based on target-responsive DNA hydrogel with Au@HKUST-1 encapsulation, Sens. Actuat. B-Chem. 289, 56 (2019).
    [14]
    F. Li, J. Tang, J. Geng, D. Luo, and D. Yang, Polymeric DNA hydrogel: design, synthesis and applications, Prog. Polym. Sci. 98, 101163 (2019).
    [15]
    H. Song, Y. Zhang, P. Cheng, X. Chen, Y. Luo, and W. Xu, A rapidly self-assembling soft-brush DNA hydrogel based on RCA products, Chem. Commun. 55, 5375 30994649(2019).
    [16]
    Z. Xing, A. Caciagli, T. Cao, I. Stoev, M. Zupkauskas, T. O’Neill, T. Wenzel, R. Lamboll, D. Liu, and E. Eiser, Microrheology of DNA hydrogels, Proc. Natl. Acad. Sci. 115, 8137 30045862(2018).
    [17]
    X. Zhou, C. Li, Y. Shao, C. Chen, Z. Yang, and D. Liu, Reversibly tuning the mechanical properties of a DNA hydrogel by a DNA nanomotor, Chem. Commun. 52, 10668 27506763(2016).
    [18]
    J. B. Lee, S. Peng, D. Yang, Y. H. Roh, H. Funabashi, N. Park, E. J. Rice, L. Chen, R. Long, M. Wu, and D. Luo, A mechanical metamaterial made from a DNA hydrogel, Nat. Nanotech. 7, 816 23202472(2012).
    [19]
    H. Qi, M. Ghodousi, Y. Du, C. Grun, H. Bae, P. Yin, and A. Khademhosseini, DNA-directed self-assembly of shape-controlled hydrogels, Nat. Commun. 4, 2275 24013352(2013).
    [20]
    O. J. N. Bertrand, D. K. Fygenson, and O. A. Saleh, Active, motor-driven mechanics in a DNA gel, Proc. Natl. Acad. Sci. 109, 17342 23045635(2012).
    [21]
    D. J. Sherratt, L. K. Arciszewska, E. Crozat, J. E. Graham, and I. Grainge, The Escherichia coli, Biochem. Soc. Trans. 38, 395 20298190(2010).
    [22]
    J. E. Graham, D. J. Sherratt, and M. D. Szczelkun, Sequence-specific assembly of FtsK hexamers establishes directional translocation on DNA, Proc. Natl. Acad. Sci. 107, 20263 21048089(2010).
    [23]
    S. Bigot, O. A. Saleh, F. Cornet, J. F. Allemand, and F. X. Barre, Oriented loading of FtsK on KOPS, Nat. Struct. Mol. Biol. 13, 1026 17041597(2006).
    [24]
    S. Bigot, O. A. Saleh, C. Lesterlin, C. Pages, M. El Karoui, C. Dennis, M. Grigoriev, J. F. Allemand, F. X. Barre, and F. Cornet, KOPS: DNA motifs that control E. coli, EMBO J 24, 3770 16211009(2005).
    [25]
    O. A. Saleh, C. Pérals, F. X. Barre, and J. F. Allemand, Fast, DNA-sequence independent translocation by FtsK in a single-molecule experiment, EMBO J 23, 2430 15167891(2004).
    [26]
    J. L. Ptacin, M. Nöllmann, C. Bustamante, and N. R. Cozzarelli, Identification of the FtsK sequence-recognition domain, Nat Struct Mol Biol 13, 1023 17041598(2006).
    [27]
    S. Bigot, V. Sivanathan, C. Possoz, F. X. Barre, and F. Cornet, FtsK, a literate chromosome segregation machine, Mol. Microbiol. 64, 1434 17511809(2007).
    [28]
    D. Chowdhury, Stochastic mechano-chemical kinetics of molecular motors: a multidisciplinary enterprise from a physicist's perspective, Phys. Rep. 529, 1 (2013).
    [29]
    E. Crozat, A. Meglio, J. F. Allemand, C. E. Chivers, M. Howarth, C. Vénien-Bryan, I. Grainge, and D. J. Sherratt, Separating speed and ability to displace roadblocks during DNA translocation by FtsK, EMBO J 29, 1423 20379135(2010).
    [30]
    J. E. Graham, V. Sivanathan, D. J. Sherratt, and L. K. Arciszewska, FtsK translocation on DNA stops at XerCD-dif, Nucleic Acids Res. 38, 72 19854947(2010).
    [31]
    P. J. Pease, O. Levy, G. J. Cost, J. Gore, J. L. Ptacin, D. Sherratt, C. Bustamante, and N. R. Cozzarelli, Sequence-directed DNA translocation by purified FtsK, Science 307, 586 15681387(2005).
    [32]
    A. Kunwar, and A. Mogilner, Robust transport by multiple motors with nonlinear force-velocity relations and stochastic load sharing, Phys. Biol. 7, 016012 20147778(2010).
    [33]
    P. Gross, N. Laurens, L. B. Oddershede, U. Bockelmann, E. J. G. Peterman, and G. J. L. Wuite, Quantifying how DNA stretches, melts and changes twist under tension, Nat. Phys. 7, 731 (2011).
    [34]
    M. K. Kuimova, Mapping viscosity in cells using molecular rotors, Phys. Chem. Chem. Phys. 14, 12671 22806312(2012).
    [35]
    E. C. Fieller, H. O. Hartley, and E. S. Pearson, Tests for rank correlation coefficients. I, Biometrika 44, 470 (1957).
    [36]
    J. F. Marko, Stretching must twist DNA, Europhys. Lett. 38, 183 (1997).
    [37]
    T. A. J. Duke, Molecular model of muscle contraction, Proc. Natl. Acad. Sci. 96, 2770 10077586(1999).
    [38]
    J. Y. Lee, I. J. Finkelstein, L. K. Arciszewska, D. J. Sherratt, and E. C. Greene, Single-molecule imaging of FtsK translocation reveals mechanistic features of protein-protein collisions on DNA, Mol. Cell 54, 832 24768536(2014).
    [39]
    T. C. B. McLeish, Tube theory of entangled polymer dynamics, Adv. Phys. 51, 1379 (2002).
    [40]
    S. Weerakoon, and T. G. I. Fernando, A variant of Newton′s method with accelerated third-order convergence, Appl. Math. Lett. 13, 87 (2000).
    [41]
    B. Chen, Self-regulation of motor force through chemomechanical coupling in skeletal muscle contraction, J. Appl. Mech. 80, 051013 (2013).
    [42]
    B. Chen, and C. Dong, Modeling Deoxyribose Nucleic Acid as an elastic rod inlaid with fibrils, J. Appl. Mech. 81, 071005 (2014).
    [43]
    C. Dong, and B. Chen, Coupling of bond breaking with state transition leads to high apparent detachment rates of a single Myosin, J. Appl. Mech. 83, 051011 (2016).
    [44]
    X. Chen, and B. Chen, Simplified analysis for the association of a constrained receptor to an oscillating ligand, J. Appl. Mech. 83, 091006 (2016).
  • 加载中

Catalog

    Figures(6)  / Tables(2)

    Article Metrics

    Article views(42) PDF downloads(0) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return