Citation: | M. Jiang, H. T. Zhou, X. S. Li, W. X. Fu, Y. F. Wang, and Y. S. Wang,Extreme transmission of elastic metasurface for deep subwavelength focusing. Acta Mech. Sin., 2022, 38, |
[1] |
M. Kadic, G. W. Milton, M. van Hecke, and M. Wegener, 3D metamaterials, Nat. Rev. Phys 1, 198 (2019).
|
[2] |
J. Valentine, S. Zhang, T. Zentgraf, E. Ulin-Avila, D. A. Genov, G. Bartal, and X. Zhang, Three-dimensional optical metamaterial with a negative refractive index, Nature 455, 376 18690249(2008).
|
[3] |
Y. C. Zhang, Y. J. Liang, S. T. Liu, and Y. D. Su, A new design of dual-constituent triangular lattice metamaterial with unbounded thermal expansion, Acta Mech. Sin. 35, 507 (2019).
|
[4] |
Y. Zhu, K. Donda, S. Fan, L. Cao, and B. Assouar, Broadband ultra-thin acoustic metasurface absorber with coiled structure, Appl. Phys. Express 12, 114002 (2019).
|
[5] |
Y. Li, and B. M. Assouar, Acoustic metasurface-based perfect absorber with deep subwavelength thickness, Appl. Phys. Lett. 108, 063502 (2016).
|
[6] |
C. J. Naify, J. S. Rogers, M. D. Guild, C. A. Rohde, and G. J. Orris, Evaluation of the resolution of a metamaterial acoustic leaky wave antenna, J. Acoust. Soc. Am. 139, 3251 27369149(2016).
|
[7] |
W. Liu, X. Sun, M. Gao, and S. Wang, Luneburg and flat lens based on graded photonic crystal, Opt. Commun. 364, 225 (2016).
|
[8] |
C. M. Park, and S. H. Lee, An acoustic lens built with a low dispersion metamaterial, J. Appl. Phys. 117, 034904 (2015).
|
[9] |
H. T. Chen, A. J. Taylor, and N. Yu, A review of metasurfaces: Physics and applications, Rep. Prog. Phys. 79, 076401 27308726(2016).
|
[10] |
N. Yu, P. Genevet, M. A. Kats, F. Aieta, J. P. Tetienne, F. Capasso, and Z. Gaburro, Light propagation with phase discontinuities: Generalized laws of reflection and refraction, Science 334, 333 21885733(2011).
|
[11] |
G. Su, and Y. Liu, Amplitude-modulated binary acoustic metasurface for perfect anomalous refraction, Appl. Phys. Lett. 117, 221901 (2020).
|
[12] |
J. Li, C. Shen, A. Díaz-Rubio, S. A. Tretyakov, and S. A. Cummer, Systematic design and experimental demonstration of bianisotropic metasurfaces for scattering-free manipulation of acoustic wavefronts, Nat. Commun. 9, 1342 29632385(2018).
|
[13] |
Y. Li, X. Jiang, B. Liang, J. Cheng, and L. Zhang, Metascreen-based acoustic passive phased array, Phys. Rev. Appl. 4, 024003 (2015).
|
[14] |
Y. Zhu, and B. Assouar, Multifunctional acoustic metasurface based on an array of Helmholtz resonators, Phys. Rev. B 99, 174109 (2019).
|
[15] |
G. Y. Song, B. Huang, H. Y. Dong, Q. Cheng, and T. J. Cui, Broadband focusing acoustic lens based on fractal metamaterials, Sci. Rep. 6, 35929 27782216(2016).
|
[16] |
F. Ju, W. Xiong, C. Liu, Y. Cheng, and X. Liu, Acoustic accelerating beam based on a curved metasurface, Appl. Phys. Lett. 114, 113507 (2019).
|
[17] |
S. Zhao, Y. Hu, J. Lu, X. Qiu, J. Cheng, and I. Burnett, Delivering sound energy along an arbitrary convex trajectory, Sci. Rep. 4, 6628 25316353(2014).
|
[18] |
H. T. Zhou, S. W. Fan, X. S. Li, W. X. Fu, Y. F. Wang, and Y. S. Wang, Tunable arc-shaped acoustic metasurface carpet cloak, Smart Mater. Struct. 29, 065016 (2020).
|
[19] |
S. W. Fan, S. D. Zhao, L. Cao, Y. Zhu, A. L. Chen, Y. F. Wang, K. Donda, Y. S. Wang, and B. Assouar, Reconfigurable curved metasurface for acoustic cloaking and illusion, Phys. Rev. B 101, 024104 (2020).
|
[20] |
F. Ma, Y. Xu, and J. H. Wu, Shell-type acoustic metasurface and arc-shape carpet cloak, Sci. Rep. 9, 8076 31147607(2019).
|
[21] |
M. Zheng, C. I. Park, X. Liu, R. Zhu, G. Hu, and Y. Y. Kim, Non-resonant metasurface for broadband elastic wave mode splitting, Appl. Phys. Lett. 116, 171903 (2020).
|
[22] |
L. Cao, Z. Yang, Y. Xu, S. W. Fan, Y. Zhu, Z. Chen, B. Vincent, and B. Assouar, Disordered elastic metasurfaces, Phys. Rev. Appl. 13, 014054 (2020).
|
[23] |
J. Zhang, X. Zhang, F. Xu, X. Ding, M. Deng, N. Hu, and C. Zhang, Vibration control of flexural waves in thin plates by 3D-printed metasurfaces, J. Sound Vib. 481, 115440 (2020).
|
[24] |
L. Cao, Z. Yang, Y. Xu, Z. Chen, Y. Zhu, S. W. Fan, K. Donda, B. Vincent, and B. Assouar, Pillared elastic metasurface with constructive interference for flexural wave manipulation, Mech. Syst. Signal Proc. 146, 107035 (2021).
|
[25] |
S. M. Yuan, A. L. Chen, and Y. S. Wang, Switchable multifunctional fish-bone elastic metasurface for transmitted plate wave modulation, J. Sound Vib. 470, 115168 (2020).
|
[26] |
H. Zhu, and F. Semperlotti, Anomalous refraction of acoustic guided waves in solids with geometrically tapered metasurfaces, Phys. Rev. Lett. 117, 034302 27472114(2016).
|
[27] |
G. Su, Y. Zhang, Y. Liu, and T. Wang, Steering flexural waves by amplitude-shift elastic metasurfaces, J. Appl. Mech. 88, 051011 (2021).
|
[28] |
H. Lee, J. K. Lee, H. M. Seung, and Y. Y. Kim, Mass-stiffness substructuring of an elastic metasurface for full transmission beam steering, J. Mech. Phys. Solids 112, 577 (2018).
|
[29] |
L. Cao, Z. Yang, and Y. Xu, Steering elastic SH waves in an anomalous way by metasurface, J. Sound Vib. 418, 1 (2018).
|
[30] |
Y. C. Su, T. Chen, L. H. Ko, and M. H. Lu, Design of metasurfaces to enable shear horizontal wave trapping, J. Appl. Phys. 128, 175107 (2020).
|
[31] |
Y. Liu, Z. Liang, F. Liu, O. Diba, A. Lamb, and J. Li, Source illusion devices for flexural lamb waves using elastic metasurfaces, Phys. Rev. Lett. 119, 034301 28777641(2017).
|
[32] |
S. W. Lee, H. M. Seung, W. Choi, M. Kim, and J. H. Oh, Broad-angle refractive transmodal elastic metasurface, Appl. Phys. Lett. 117, 213502 (2020).
|
[33] |
S. W. Lee, and J. H. Oh, Single-layer elastic metasurface with double negativity for anomalous refraction, J. Phys. D-Appl. Phys. 53, 265301 (2020).
|
[34] |
S. Li, J. Xu, and J. Tang, Tunable modulation of refracted lamb wave front facilitated by adaptive elastic metasurfaces, Appl. Phys. Lett. 112, 021903 (2018).
|
[35] |
K. Yi, M. Collet, M. Ichchou, and L. Li, Flexural waves focusing through shunted piezoelectric patches, Smart Mater. Struct. 25, 075007 (2016).
|
[36] |
Y. Chen, X. Li, H. Nassar, G. Hu, and G. Huang, A programmable metasurface for real time control of broadband elastic rays, Smart Mater. Struct. 27, 115011 (2018).
|
[37] |
S. Y. Kim, W. Lee, J. S. Lee, and Y. Y. Kim, Longitudinal wave steering using beam-type elastic metagratings, Mech. Syst. Signal Proc. 156, 107688 (2021).
|
[38] |
M. Zheng, X. Liu, Y. Chen, H. Miao, R. Zhu, and G. Hu, Theory and realization of nonresonant anisotropic singly polarized solids carrying only shear waves, Phys. Rev. Appl. 12, 014027 (2019).
|
[39] |
Z. Hou, X. Fang, Y. Li, and B. Assouar, Highly efficient acoustic metagrating with strongly coupled surface grooves, Phys. Rev. Appl. 12, 034021 (2019).
|
[40] |
H. Ni, X. Fang, Z. Hou, Y. Li, and B. Assouar, High-efficiency anomalous splitter by acoustic meta-grating, Phys. Rev. B 100, 104104 (2019).
|
[41] |
J. Rong, and W. Ye, Multifunctional elastic metasurface design with topology optimization, Acta Mater. 185, 382 (2020).
|
[42] |
J. Rong, W. Ye, S. Zhang, and Y. Liu, Frequency-coded passive multifunctional elastic metasurfaces, Adv. Funct. Mater. 30, 2005285 (2020).
|
[43] |
S. M. Yuan, A. L. Chen, L. Cao, H. W. Zhang, S. W. Fan, B. Assouar, and Y. S. Wang, Tunable multifunctional fish-bone elastic metasurface for the wavefront manipulation of the transmitted in-plane waves, J. Appl. Phys. 128, 224502 (2020).
|
[44] |
J. Zhang, X. Su, Y. Liu, Y. Zhao, Y. Jing, and N. Hu, Metasurface constituted by thin composite beams to steer flexural waves in thin plates, Int. J. Solids Struct. 162, 14 (2019).
|
[45] |
X. Su, Z. Lu, and A. N. Norris, Elastic metasurfaces for splitting SV- and P-waves in elastic solids, J. Appl. Phys. 123, 091701 (2018).
|
[46] |
Y. Liu, H. Li, J. Zhang, X. Liu, L. Wu, H. Ning, and N. Hu, Design of elastic metasurfaces for controlling shear vertical waves using uniaxial scaling transformation method, Int. J. Mech. Sci. 169, 105335 (2020).
|
[47] |
H. Zhu, S. Patnaik, T. F. Walsh, B. H. Jared, and F. Semperlotti, Nonlocal elastic metasurfaces: Enabling broadband wave control via intentional nonlocality, Proc. Natl. Acad. Sci. USA 117, 26099 33020274(2020).
|
[48] |
S. Zhai, H. Chen, C. Ding, F. Shen, C. Luo, and X. Zhao, Manipulation of transmitted wave front using ultrathin planar acoustic metasurfaces, Appl. Phys. A 120, 1283 (2015).
|
[49] |
B. H. Song, and J. S. Bolton, A transfer-matrix approach for estimating the characteristic impedance and wave numbers of limp and rigid porous materials, J. Acoust. Soc. Am. 107, 1131 10738770(2000).
|
[50] |
X. Su, and A. N. Norris, Focusing, refraction, and asymmetric transmission of elastic waves in solid metamaterials with aligned parallel gaps, J. Acoust. Soc. Am. 139, 3386 27369165(2016).
|
[51] |
X. S. Li, Y. F. Wang, A. L. Chen, and Y. S. Wang, An arbitrarily curved acoustic metasurface for three-dimensional reflected wave-front modulation, J. Phys. D-Appl. Phys. 53, 195301 (2020).
|
[52] |
A. Díaz-Rubio, and S. A. Tretyakov, Acoustic metasurfaces for scattering-free anomalous reflection and refraction, Phys. Rev. B 96, 125409 (2017).
|
[53] |
Z. Zhou, S. Huang, D. Li, J. Zhu, and Y. Li, Broadband impedance modulation via non-local acoustic metamaterials, Natl. Sci. Rev. https://doi.org/10.1093/nsr/nwab171 (2021).
|
[54] |
Y. Ra’di, D. L. Sounas, and A. Alù, Metagratings: Beyond the limits of graded metasurfaces for wave front control, Phys. Rev. Lett. 119, 067404 28949646(2017).
|