Citation: | Q. Jin, and Y. Ren,Nonlinear size-dependent dynamic instability and local bifurcation of FG nanotubes transporting oscillatory fluids. Acta Mech. Sin., 2022, 38, |
[1] |
H. M. Sedighi, Divergence and flutter instability of magneto-thermo-elastic C-BN hetero-nanotubes conveying fluid, Acta Mech. Sin. 36, 381 (2020).
|
[2] |
M. R. Zarastvand, M. Ghassabi, and R. Talebitooti, Prediction of acoustic wave transmission features of the multilayered plate constructions: a review, J. Sandwich Struct. Mater. 24, 218 (2022).
|
[3] |
H. Darvishgohari, M. R. Zarastvand, R. Talebitooti, and R. Shahbazi, Hybrid control technique for vibroacoustic performance analysis of a smart doubly curved sandwich structure considering sensor and actuator layers, J. Sandwich Struct. Mater. 23, 1453 (2021).
|
[4] |
R. Ansari, R. Gholami, A. Norouzzadeh, and M. A. Darabi, Surface stress effect on the vibration and instability of nanoscale pipes conveying fluid based on a size-dependent Timoshenko beam model, Acta Mech. Sin. 31, 708 (2015).
|
[5] |
B. Hu, J. Liu, Y. Wang, B. Zhang, and H. Shen, Wave propagation in graphene reinforced piezoelectric sandwich nanoplates via high-order nonlocal strain gradient theory, Acta Mech. Sin. 37, 1446 (2021).
|
[6] |
W. M. Zhang, and L. Zuo, Vibration energy harvesting: from micro to macro scale, Acta Mech. Sin. 36, 555 (2020).
|
[7] |
M. H. Ghayesh, H. Farokhi, and A. Farajpour, Global dynamics of fluid conveying nanotubes, Int. J. Eng. Sci. 135, 37 (2019).
|
[8] |
F. Liang, A. Gao, X. F. Li, and W. D. Zhu, Nonlinear parametric vibration of spinning pipes conveying fluid with varying spinning speed and flow velocity, Appl. Math. Model. 95, 320 (2021).
|
[9] |
D. Zhao, J. Liu, and C. Q. Wu, Stability and local bifurcation of parameter-excited vibration of pipes conveying pulsating fluid under thermal loading, Appl. Math. Mech.-Engl. Ed. 36, 1017 (2015).
|
[10] |
Y. F. Zhang, M. H. Yao, W. Zhang, and B. C. Wen, Dynamical modeling and multi-pulse chaotic dynamics of cantilevered pipe conveying pulsating fluid in parametric resonance, Aerospace Sci. Tech. 68, 441 (2017).
|
[11] |
L. Wang, A further study on the non-linear dynamics of simply supported pipes conveying pulsating fluid, Int. J. Non-Linear Mech. 44, 115 (2009).
|
[12] |
A. R. Askarian, H. Haddadpour, R. D. Firouz-Abadi, and H. Abtahi, Nonlinear dynamics of extensible viscoelastic cantilevered pipes conveying pulsatile flow with an end nozzle, Int. J. Non-Linear Mech. 91, 22 (2017).
|
[13] |
X. Tan, and H. Ding, Parametric resonances of Timoshenko pipes conveying pulsating high-speed fluids, J. Sound Vib. 485, 115594 (2020).
|
[14] |
Q. Li, W. Liu, K. Lu, and Z. Yue, Three-dimensional parametric resonance of fluid-conveying pipes in the pre-buckling and post-buckling states, Int. J. Pressure Vessels Piping 189, 104287 (2021).
|
[15] |
T. Jiang, H. Dai, and L. Wang, Three-dimensional dynamics of fluid-conveying pipe simultaneously subjected to external axial flow, Ocean Eng. 217, 107970 (2020).
|
[16] |
L. Wang, T. L. Jiang, and H. L. Dai, Three-dimensional dynamics of supported pipes conveying fluid, Acta Mech. Sin. 33, 1065 (2017).
|
[17] |
Y. D. Li, and Y. R. Yang, Nonlinear vibration of slightly curved pipe with conveying pulsating fluid, Nonlinear Dyn 88, 2513 (2017).
|
[18] |
Q. Ni, M. Tang, Y. Wang, and L. Wang, In-plane and out-of-plane dynamics of a curved pipe conveying pulsating fluid, Nonlinear Dyn 75, 603 (2014).
|
[19] |
L. Lü, Y. Hu, X. Wang, L. Ling, and C. Li, Dynamical bifurcation and synchronization of two nonlinearly coupled fluid-conveying pipes, Nonlinear Dyn 79, 2715 (2015).
|
[20] |
V. V. Bolotin, and H. L. Armstrong, The dynamic stability of elastic systems, Am. J. Phys. 33, 752 (1965).
|
[21] |
C. Pierre, and E. H. Dowell, A study of dynamic instability of plates by an extended incremental harmonic balance method, J. Appl. Mech. 52, 693 (1985).
|
[22] |
Y. Fu, J. Zhong, X. Shao, and C. Tao, Analysis of nonlinear dynamic stability for carbon nanotube-reinforced composite plates resting on elastic foundations, Mech. Adv. Mater. Struct. 23, 1284 (2016).
|
[23] |
J. Yoon, C. Q. Ru, and A. Mioduchowski, Flow-induced flutter instability of cantilever carbon nanotubes, Int. J. Solids Struct. 43, 3337 (2006).
|
[24] |
F. Zheng, Y. Lu, and A. Ebrahimi-Mamaghani, Dynamical stability of embedded spinning axially graded micro and nanotubes conveying fluid, Waves Random Complex Media 1 (2020).
|
[25] |
|
[26] |
M. H. Ghayesh, A. Farajpour, and H. Farokhi, Effect of flow pulsations on chaos in nanotubes using nonlocal strain gradient theory, Commun. Nonlinear Sci. Numer. Simul. 83, 105090 (2020).
|
[27] |
F. Liang, and Y. Su, Stability analysis of a single-walled carbon nanotube conveying pulsating and viscous fluid with nonlocal effect, Appl. Math. Model. 37, 6821 (2013).
|
[28] |
R. Bahaadini, M. Hosseini, and M. Amiri, Dynamic stability of viscoelastic nanotubes conveying pulsating magnetic nanoflow under magnetic field, Eng. Comput. 37, 2877 (2021).
|
[29] |
R. Bahaadini, A. R. Saidi, and M. Hosseini, Dynamic stability of fluid-conveying thin-walled rotating pipes reinforced with functionally graded carbon nanotubes, Acta Mech. 229, 5013 (2018).
|
[30] |
M. R. Zarastvand, M. Ghassabi, and R. Talebitooti, A review approach for sound propagation prediction of plate constructions, Arch. Computat. Methods Eng. 28, 2817 (2021).
|
[31] |
M. R. Zarastvand, M. Ghassabi, and R. Talebitooti, Acoustic insulation characteristics of shell structures: a review, Arch. Computat. Methods Eng. 28, 505 (2021).
|
[32] |
M. H. Jalaei, A. G. Arani, and H. Nguyen-Xuan, Investigation of thermal and magnetic field effects on the dynamic instability of FG Timoshenko nanobeam employing nonlocal strain gradient theory, Int. J. Mech. Sci. 161-162, 105043 (2019).
|
[33] |
Q. Jin, Y. Ren, H. Jiang, and L. Li, A higher-order size-dependent beam model for nonlinear mechanics of fluid-conveying FG nanotubes incorporating surface energy, Compos. Struct. 269, 114022 (2021).
|
[34] |
P. Zhang, and Y. Fu, A higher-order beam model for tubes, Eur. J. Mech.-A Solids 38, 12 (2013).
|
[35] |
C. W. Lim, G. Zhang, and J. N. Reddy, A higher-order nonlocal elasticity and strain gradient theory and its applications in wave propagation, J. Mech. Phys. Solids 78, 298 (2015).
|
[36] |
M. E. Gurtin, and A. Ian Murdoch, A continuum theory of elastic material surfaces, Arch. Rational Mech. Anal. 57, 291 (1975).
|
[37] |
L. Lu, X. Guo, and J. Zhao, On the mechanics of Kirchhoff and Mindlin plates incorporating surface energy, Int. J. Eng. Sci. 124, 24 (2018).
|
[38] |
J. Dai, Y. Liu, and G. Tong, Stability analysis of a periodic fluid-conveying heterogeneous nanotube system, Acta Mech. Solid Sin. 33, 756 (2020).
|
[39] |
A. Amiri, R. Talebitooti, and L. Li, Wave propagation in viscous-fluid-conveying piezoelectric nanotubes considering surface stress effects and Knudsen number based on nonlocal strain gradient theory, Eur. Phys. J. Plus 133, 1 (2018).
|
[40] |
M. Sadeghi-Goughari, and M. Hosseini, The effects of non-uniform flow velocity on vibrations of single-walled carbon nanotube conveying fluid, J. Mech. Sci. Technol. 29, 723 (2015).
|
[41] |
A. Farajpour, H. Farokhi, M. H. Ghayesh, and S. Hussain, Nonlinear mechanics of nanotubes conveying fluid, Int. J. Eng. Sci. 133, 132 (2018).
|
[42] |
Y. Ren, L. Li, Q. Jin, L. Nie, and F. Peng, Vibration and snap-through of fluid-conveying graphene reinforced composite pipes under low-velocity impact, AIAA J 59, 5091 (2021).
|