Citation: | K. Liang, J. He, Z. Jia, and X. Zhang,Topology optimization of magnetorheological smart materials included PnCs for tunable wide bandgap design. Acta Mech. Sin., 2022, 38, |
[1] |
S. Babaee, N. Viard, P. Wang, N. X. Fang, and K. Bertoldi, Harnessing deformation to switch on and off the propagation of sound, Adv. Mater. 28, 1631 26663556(2016).
|
[2] |
K. Bertoldi, and M. C. Boyce, Mechanically triggered transformations of phononic band gaps in periodic elastomeric structures, Phys. Rev. B 77, 052105 (2008).
|
[3] |
Z. Ren, L. Ji, R. Tao, M. Chen, Z. Wan, Z. Zhao, and D. Fang, SMP-based multi-stable mechanical metamaterials: From bandgap tuning to wave logic gates, Extreme Mech. Lett. 42, 101077 (2021).
|
[4] |
R. Feng, and K. Liu, Tuning the band-gap of phononic crystals with an initial stress, Phys. B-Condensed Matter 407, 2032 (2012).
|
[5] |
S. Ning, D. Chu, F. Yang, H. Jiang, Z. Liu, and Z. Zhuang, Characteristics of band gap and low-frequency wave propagation of mechanically tunable phononic crystals with scatterers in periodic porous elastomeric matrices, J. Appl. Mech. 88, 051001 (2021).
|
[6] |
S. Zhang, Y. Shi, and Y. Gao, Tunability of band structures in a two-dimensional magnetostrictive phononic crystal plate with stress and magnetic loadings, Phys. Lett. A 381, 1055 (2017).
|
[7] |
F. Allein, V. Tournat, V. E. Gusev, and G. Theocharis, Tunable magneto-granular phononic crystals, Appl. Phys. Lett. 108, 161903 (2016).
|
[8] |
M. Ouisse, M. Collet, and F. Scarpa, A piezo-shunted kirigami auxetic lattice for adaptive elastic wave filtering, Smart Mater. Struct. 25, 115016 (2016).
|
[9] |
Y. Song, and Y. Shen, A tunable phononic crystal system for elastic ultrasonic wave control, Appl. Phys. Lett. 118, 224104 (2021).
|
[10] |
C. Nimmagadda, and K. H. Matlack, Thermally tunable band gaps in architected metamaterial structures, J. Sound Vib. 439, 29 (2019).
|
[11] |
Z. Bian, W. Peng, and J. Song, Thermal tuning of band structures in a one-dimensional phononic crystal, J. Appl. Mech. 81, 041008 (2014).
|
[12] |
O. Bou Matar, J. F. Robillard, J. O. Vasseur, A. C. Hladky-Hennion, P. A. Deymier, P. Pernod, and V. Preobrazhensky, Band gap tunability of magneto-elastic phononic crystal, J. Appl. Phys. 111, 054901 (2012).
|
[13] |
Y. L. Wei, Q. S. Yang, and R. Tao, SMP-based chiral auxetic mechanical metamaterial with tunable bandgap function, Int. J. Mech. Sci. 195, 106267 (2021).
|
[14] |
J. Zhu, H. Chen, B. Wu, W. Chen, and O. Balogun, Tunable band gaps and transmission behavior of SH waves with oblique incident angle in periodic dielectric elastomer laminates, Int. J. Mech. Sci. 146-147, 81 (2018).
|
[15] |
W. P. Yang, and L. W. Chen, The tunable acoustic band gaps of two-dimensional phononic crystals with a dielectric elastomer cylindrical actuator, Smart Mater. Struct. 17, 015011 (2008).
|
[16] |
G. Shmuel, Electrostatically tunable band gaps in finitely extensible dielectric elastomer fiber composites, Int. J. Solids Struct. 50, 680 (2013).
|
[17] |
X. Zhou, and C. Chen, Tuning the locally resonant phononic band structures of two-dimensional periodic electroactive composites, Phys. B-Condensed Matter 431, 23 (2013).
|
[18] |
J. Y. Yeh, Control analysis of the tunable phononic crystal with electrorheological material, Phys. B-Condensed Matter 400, 137 (2007).
|
[19] |
L. W. Cai, D. K. Dacol, G. J. Orris, D. C. Calvo, and M. Nicholas, Acoustical scattering by multilayer spherical elastic scatterer containing electrorheological layer, J. Acoust. Soc. Am. 129, 12 21302983(2011).
|
[20] |
A. Bayat, and F. Gordaninejad, Band-gap of a soft magnetorheological phononic crystal, J. Vib. Acoust. 137, 011011 (2015).
|
[21] |
G. Zhang, and Y. Gao, Tunability of band gaps in two-dimensional phononic crystals with magnetorheological and electrorheological composites, Acta Mech. Solid Sin. 34, 40 (2021).
|
[22] |
Y. Huang, C. L. Zhang, and W. Q. Chen, Tuning band structures of two-dimensional phononic crystals with biasing fields, J. Appl. Mech. 81, 091008 (2014).
|
[23] |
N. Karami Mohammadi, P. I. Galich, A. O. Krushynska, and S. Rudykh, Soft magnetoactive laminates: large deformations, transverse elastic waves and band gaps tunability by a magnetic field, J. Appl. Mech. 86, 111001 (2019).
|
[24] |
O. Sigmund, and K. Maute, Topology optimization approaches, Struct. Multidiscip. Optim. 48, 1031 (2013).
|
[25] |
X. Huang, and Y. M. Xie, A further review of ESO type methods for topology optimization, Struct. Multidiscip. Optim. 41, 671 (2010).
|
[26] |
G. Yi, and B. D. Youn, A comprehensive survey on topology optimization of phononic crystals, Struct. Multidiscip. Optim. 54, 1315 (2016).
|
[27] |
W. Li, F. Meng, Y. Chen, Y. Li, and X. Huang, Topology optimization of photonic and phononic crystals and metamaterials: A review, Adv. Theor. Simul. 2, 1900017 (2019).
|
[28] |
O. Sigmund, and J. S. Jensen, Systematic design of phononic band-gap materials and structures by topology optimization, Philos. Trans. R. Soc. London. Ser. A-Math. Phys. Eng. Sci. 361, 1001 12804226(2003).
|
[29] |
X. Zhang, J. Xing, P. Liu, Y. Luo, and Z. Kang, Realization of full and directional band gap design by non-gradient topology optimization in acoustic metamaterials, Extreme Mech. Lett. 42, 101126 (2021).
|
[30] |
Y. Chen, F. Meng, G. Sun, G. Li, and X. Huang, Topological design of phononic crystals for unidirectional acoustic transmission, J. Sound Vib. 410, 103 (2017).
|
[31] |
J. He, and Z. Kang, Achieving directional propagation of elastic waves via topology optimization, Ultrasonics 82, 1 28732310(2018).
|
[32] |
J. H. Park, P. S. Ma, and Y. Y. Kim, Design of phononic crystals for self-collimation of elastic waves using topology optimization method, Struct. Multidiscip. Optim. 51, 1199 (2015).
|
[33] |
C. J. Rupp, A. Evgrafov, K. Maute, and M. L. Dunn, Design of phononic materials/structures for surface wave devices using topology optimization, Struct. Multidiscip. Optim. 34, 111 (2007).
|
[34] |
H. W. Dong, S. D. Zhao, P. Wei, L. Cheng, Y. S. Wang, and C. Zhang, Systematic design and realization of double-negative acoustic metamaterials by topology optimization, Acta Mater. 172, 102 (2019).
|
[35] |
R. E. Christiansen, F. Wang, and O. Sigmund, Topological insulators by topology optimization, Phys. Rev. Lett. 122, 234502 31298901(2019).
|
[36] |
Y. Chen, F. Meng, and X. Huang, Creating acoustic topological insulators through topology optimization, Mech. Syst. Signal Process. 146, 107054 (2021).
|
[37] |
Y. Luo, and J. Bao, A material-field series-expansion method for topology optimization of continuum structures, Comput. Struct. 225, 106122 (2019).
|
[38] |
Y. Chen, X. Huang, G. Sun, X. Yan, and G. Li, Maximizing spatial decay of evanescent waves in phononic crystals by topology optimization, Comput. Struct. 182, 430 (2017).
|
[39] |
A. Evgrafov, C. J. Rupp, M. L. Dunn, and K. Maute, Optimal synthesis of tunable elastic wave-guides, Comput. Methods Appl. Mech. Eng. 198, 292 (2008).
|
[40] |
A. Shakeri, S. Darbari, and M. K. Moravvej-Farshi, Designing a tunable acoustic resonator based on defect modes, stimulated by selectively biased PZT rods in a 2D phononic crystal, Ultrasonics 92, 8 30216782(2019).
|
[41] |
X. Zhang, H. Ye, N. Wei, R. Tao, and Z. Luo, Design optimization of multifunctional metamaterials with tunable thermal expansion and phononic bandgap, Mater. Des. 209, 109990 (2021).
|
[42] |
S. L. Vatanabe, G. H. Paulino, and E. C. N. Silva, Maximizing phononic band gaps in piezocomposite materials by means of topology optimization, J. Acoust. Soc. Am. 136, 494 25096084(2014).
|
[43] |
S. Hedayatrasa, K. Abhary, M. S. Uddin, and J. K. Guest, Optimal design of tunable phononic bandgap plates under equibiaxial stretch, Smart Mater. Struct. 25, 055025 (2016).
|
[44] |
E. Bortot, O. Amir, and G. Shmuel, Topology optimization of dielectric elastomers for wide tunable band gaps, Int. J. Solids Struct. 143, 262 (2018).
|
[45] |
G. Kreisselmeier, and R. Steinhauser, Systematic control design by optimizing a vector performance index, IFAC Proc. Volumes 12, 113 (1979).
|
[46] |
X. Zhang, and Z. Kang, Topology optimization of magnetorheological fluid layers in sandwich plates for semi-active vibration control, Smart Mater. Struct. 24, 085024 (2015).
|
[47] |
V. Rajamohan, R. Sedaghati, and S. Rakheja, Optimum design of a multilayer beam partially treated with magnetorheological fluid, Smart Mater. Struct. 19, 065002 (2010).
|
[48] |
M. Stolpe, and K. Svanberg, An alternative interpolation scheme for minimum compliance topology optimization, Struct. Multidiscip. Optim. 22, 116 (2001).
|
[49] |
S. Xu, Y. Cai, and G. Cheng, Volume preserving nonlinear density filter based on heaviside functions, Struct. Multidiscip. Optim. 41, 495 (2010).
|
[50] |
X. Zhang, J. He, A. Takezawa, and Z. Kang, Robust topology optimization of phononic crystals with random field uncertainty, Int. J. Numer. Methods Eng. 115, 1154 (2018).
|
[51] |
K. Wang, Y. Liu, and B. Wang, Ultrawide band gap design of phononic crystals based on topological optimization, Phys. B-Condens. Matter 571, 263 (2019).
|
[52] |
|