Volume 38 Issue 3
Feb 2022
Turn off MathJax
Article Contents
P. Wang, Z. Liu, D. Xie, S. Qu, Z. Zhuang, and D. Zhang,Probing the constitutive behavior of microcrystals by analyzing the dynamics of the micromechanical testing system. Acta Mech. Sin., 2022, 38, http://www.w3.org/1999/xlink' xlink:href='https://doi.org/10.1007/s10409-021-09077-5'>https://doi.org/10.1007/s10409-021-09077-5
Citation: P. Wang, Z. Liu, D. Xie, S. Qu, Z. Zhuang, and D. Zhang,Probing the constitutive behavior of microcrystals by analyzing the dynamics of the micromechanical testing system. Acta Mech. Sin., 2022, 38, http://www.w3.org/1999/xlink" xlink:href="https://doi.org/10.1007/s10409-021-09077-5">https://doi.org/10.1007/s10409-021-09077-5

Probing the constitutive behavior of microcrystals by analyzing the dynamics of the micromechanical testing system

doi: 10.1007/s10409-021-09077-5
Funds:

the National Natural Science Foundation of China Grant

the Fundamental Research Funds for the Central Universities Grant

and the China Postdoctoral Science Foundation Grant

More Information
  • The constitutive behavior of microcrystals remains mysterious since very little, or no information regarding plastic deformation in the measured stress-strain curve is available due to plastic instability. Furthermore, the measured stress-strain curves vary greatly under different control modes, while constitutive behavior should remain unaffected by test methods. Beyond these reasons, probing the real constitutive behavior of microcrystals has long been a challenge because the nonlinear dynamical behaviors of micromechanical testing systems are unclear. Here, we perform and carefully analyze the experiments on single-crystal aluminum micropillars under displacement control and load control. To interpret these experimental results, a lumped-parameter physical model based on the principle of micromechanical testing is developed, which can directly relate nonlinear dynamics of the micromechanical testing system to the constitutive behavior of microcrystals. This reveals that some stages of the measured stress-strain curve attributed to the control algorithm are not related to constitutive behavior. By solving the nonlinear dynamics of the micromechanical testing system, intense plastic instability (large strain burst) starting from the equilibrium state is attributed to the strain-softening stage of microcrystals. Parametric studies are also performed to reduce the influence of plastic instability on the measured responses. This study provides critical insights for developing various constitutive models and designing a reliable micromechanical testing system.

     

  • loading
  • [1]
    F. F. Csikor, C. Motz, D. Weygand, M. Zaiser, and S. Zapperi, Dislocation avalanches, strain bursts, and the problem of plastic forming at the micrometer scale, Science 318, 251 17932293(2007).
    [2]
    K. A. Dahmen, Y. Ben-Zion, and J. T. Uhl, Micromechanical model for deformation in solids with universal predictions for stress-strain curves and slip avalanches, Phys. Rev. Lett. 102, 175501 19518791(2009).
    [3]
    Y. Cui, G. Po, and N. Ghoniem, Controlling strain bursts and avalanches at the nano- to micrometer scale, Phys. Rev. Lett. 117, 155502 27768336(2016).
    [4]
    X. Ni, S. Papanikolaou, G. Vajente, R. X. Adhikari, and J. R. Greer, Probing microplasticity in small-scale FCC crystals via dynamic mechanical analysis, Phys. Rev. Lett. 118, 155501 28452540(2017).
    [5]
    P. Wang, F. Liu, Y. Cui, Z. Liu, S. Qu, and Z. Zhuang, Interpreting strain burst in micropillar compression through instability of loading system, Int. J. Plast. 107, 150 (2018).
    [6]
    X. Ni, H. Zhang, D. B. Liarte, L. W. McFaul, K. A. Dahmen, J. P. Sethna, and J. R. Greer, Yield precursor dislocation avalanches in small crystals: The irreversibility transition, Phys. Rev. Lett. 123, 035501 31386460(2019).
    [7]
    P. Hua, K. Chu, and Q. Sun, Grain refinement and amorphization in nanocrystalline NiTi micropillars under uniaxial compression, Scripta Mater. 154, 123 (2018).
    [8]
    Y. Hu, L. Shu, Q. Yang, W. Guo, P. K. Liaw, K. A. Dahmen, and J. M. Zuo, Dislocation avalanche mechanism in slowly compressed high entropy alloy nanopillars, Commun. Phys. 1, 61 (2018).
    [9]
    Z. W. Shan, J. Li, Y. Q. Cheng, A. M. Minor, S. A. Syed Asif, O. L. Warren, and E. Ma, Plastic flow and failure resistance of metallic glass: Insight from in situ, Phys. Rev. B 77, 155419 (2008).
    [10]
    P. Wang, T. Yin, and S. Qu, On the grain size dependent working hardening behaviors of severe plastic deformation processed metals, Scripta Mater. 178, 171 (2020).
    [11]
    P. Wang, Y. Xiang, X. Wang, Z. Liu, S. Qu, and Z. Zhuang, New insight for mechanical properties of metals processed by severe plastic deformation, Int. J. Plast. 123, 22 (2019).
    [12]
    R. Maaβ, M. Wraith, J. T. Uhl, J. R. Greer, and K. A. Dahmen, Slip statistics of dislocation avalanches under different loading modes, Phys. Rev. E 91, 042403 25974504(2015).
    [13]
    Z. J. Wang, Q. J. Li, Z. W. Shan, J. Li, J. Sun, and E. Ma, Sample size effects on the large strain bursts in submicron aluminum pillars, Appl. Phys. Lett. 100, 071906 (2012).
    [14]
    A. T. Jennings, J. Li, and J. R. Greer, Emergence of strain-rate sensitivity in Cu nanopillars: Transition from dislocation multiplication to dislocation nucleation, Acta Mater. 59, 5627 (2011).
    [15]
    Y. Gao, and H. Bei, Strength statistics of single crystals and metallic glasses under small stressed volumes, Prog. Mater. Sci. 82, 118 (2016).
    [16]
    H. Tang, K. W. Schwarz, and H. D. Espinosa, Dislocation-source shutdown and the plastic behavior of single-crystal micropillars, Phys. Rev. Lett. 100, 185503 18518390(2008).
    [17]
    P. Lin, Z. Liu, Y. Cui, and Z. Zhuang, A stochastic crystal plasticity model with size-dependent and intermittent strain bursts characteristics at micron scale, Int. J. Solids Struct. 69-70, 267 (2015).
    [18]
    T. Crosby, G. Po, C. Erel, and N. Ghoniem, The origin of strain avalanches in sub-micron plasticity of fcc metals, Acta Mater. 89, 123 (2015).
    [19]
    Y. Cui, G. Po, and N. Ghoniem, Influence of loading control on strain bursts and dislocation avalanches at the nanometer and micrometer scale, Phys. Rev. B 95, 064103 (2017).
    [20]
    A. Sedlmayr, E. Bitzek, D. S. Gianola, G. Richter, R. Mönig, and O. Kraft, Existence of two twinning-mediated plastic deformation modes in Au nanowhiskers, Acta Mater. 60, 3985 (2012).
    [21]
    X. Zhang, X. Zhang, F. Shang, and Q. Li, Second-order work and strain burst in single-crystalline micropillar plasticity, Int. J. Plast. 77, 192 (2016).
    [22]
    K. S. Ng, and A. H. W. Ngan, Stochastic nature of plasticity of aluminum micro-pillars, Acta Mater. 56, 1712 (2008).
    [23]
    D. M. Dimiduk, C. Woodward, R. Lesar, and M. D. Uchic, Scale-free intermittent flow in crystal plasticity, Science 312, 1188 16728635(2006).
    [24]
    D. M. Dimiduk, M. D. Uchic, and T. A. Parthasarathy, Size-affected single-slip behavior of pure nickel microcrystals, Acta Mater. 53, 4065 (2005).
    [25]
    M. D. Uchic, D. M. Dimiduk, J. N. Florando, and W. D. Nix, Sample dimensions influence strength and crystal plasticity, Science 305, 986 15310897(2004).
    [26]
    M. D. Uchic, and D. M. Dimiduk, A methodology to investigate size scale effects in crystalline plasticity using uniaxial compression testing, Mater. Sci. Eng.-A 400-401, 268 (2005).
    [27]
    W. M. Mook, C. Niederberger, M. Bechelany, L. Philippe, and J. Michler, Compression of freestanding gold nanostructures: From stochastic yield to predictable flow, Nanotechnology 21, 055701 20023305(2010).
    [28]
    D. G. Xie, R. R. Zhang, Z. Y. Nie, J. Li, E. Ma, J. Li, and Z. W. Shan, Deformation mechanism maps for sub-micron sized aluminum, Acta Mater. 188, 570 (2020).
    [29]
    S. S. Brenner, Plastic deformation of copper and silver whiskers, J. Appl. Phys. 28, 1023 (1957).
    [30]
    S. S. Brenner, Tensile strength of whiskers, J. Appl. Phys. 27, 1484 (1956).
    [31]
    L. A. Zepeda-Ruiz, A. Stukowski, T. Oppelstrup, and V. V. Bulatov, Probing the limits of metal plasticity with molecular dynamics simulations, Nature 550, 492 28953878(2017).
    [32]
    D. Krajcinovic, and M. A. G. Silva, Statistical aspects of the continuous damage theory, Int. J. Solids Struct. 18, 551 (1982).
  • 加载中

Catalog

    Figures(14)

    Article Metrics

    Article views(46) PDF downloads(0) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return