Citation: | P. Wang, Z. Liu, D. Xie, S. Qu, Z. Zhuang, and D. Zhang,Probing the constitutive behavior of microcrystals by analyzing the dynamics of the micromechanical testing system. Acta Mech. Sin., 2022, 38, |
[1] |
F. F. Csikor, C. Motz, D. Weygand, M. Zaiser, and S. Zapperi, Dislocation avalanches, strain bursts, and the problem of plastic forming at the micrometer scale, Science 318, 251 17932293(2007).
|
[2] |
K. A. Dahmen, Y. Ben-Zion, and J. T. Uhl, Micromechanical model for deformation in solids with universal predictions for stress-strain curves and slip avalanches, Phys. Rev. Lett. 102, 175501 19518791(2009).
|
[3] |
Y. Cui, G. Po, and N. Ghoniem, Controlling strain bursts and avalanches at the nano- to micrometer scale, Phys. Rev. Lett. 117, 155502 27768336(2016).
|
[4] |
X. Ni, S. Papanikolaou, G. Vajente, R. X. Adhikari, and J. R. Greer, Probing microplasticity in small-scale FCC crystals via dynamic mechanical analysis, Phys. Rev. Lett. 118, 155501 28452540(2017).
|
[5] |
P. Wang, F. Liu, Y. Cui, Z. Liu, S. Qu, and Z. Zhuang, Interpreting strain burst in micropillar compression through instability of loading system, Int. J. Plast. 107, 150 (2018).
|
[6] |
X. Ni, H. Zhang, D. B. Liarte, L. W. McFaul, K. A. Dahmen, J. P. Sethna, and J. R. Greer, Yield precursor dislocation avalanches in small crystals: The irreversibility transition, Phys. Rev. Lett. 123, 035501 31386460(2019).
|
[7] |
P. Hua, K. Chu, and Q. Sun, Grain refinement and amorphization in nanocrystalline NiTi micropillars under uniaxial compression, Scripta Mater. 154, 123 (2018).
|
[8] |
Y. Hu, L. Shu, Q. Yang, W. Guo, P. K. Liaw, K. A. Dahmen, and J. M. Zuo, Dislocation avalanche mechanism in slowly compressed high entropy alloy nanopillars, Commun. Phys. 1, 61 (2018).
|
[9] |
Z. W. Shan, J. Li, Y. Q. Cheng, A. M. Minor, S. A. Syed Asif, O. L. Warren, and E. Ma, Plastic flow and failure resistance of metallic glass: Insight from in situ, Phys. Rev. B 77, 155419 (2008).
|
[10] |
P. Wang, T. Yin, and S. Qu, On the grain size dependent working hardening behaviors of severe plastic deformation processed metals, Scripta Mater. 178, 171 (2020).
|
[11] |
P. Wang, Y. Xiang, X. Wang, Z. Liu, S. Qu, and Z. Zhuang, New insight for mechanical properties of metals processed by severe plastic deformation, Int. J. Plast. 123, 22 (2019).
|
[12] |
R. Maaβ, M. Wraith, J. T. Uhl, J. R. Greer, and K. A. Dahmen, Slip statistics of dislocation avalanches under different loading modes, Phys. Rev. E 91, 042403 25974504(2015).
|
[13] |
Z. J. Wang, Q. J. Li, Z. W. Shan, J. Li, J. Sun, and E. Ma, Sample size effects on the large strain bursts in submicron aluminum pillars, Appl. Phys. Lett. 100, 071906 (2012).
|
[14] |
A. T. Jennings, J. Li, and J. R. Greer, Emergence of strain-rate sensitivity in Cu nanopillars: Transition from dislocation multiplication to dislocation nucleation, Acta Mater. 59, 5627 (2011).
|
[15] |
Y. Gao, and H. Bei, Strength statistics of single crystals and metallic glasses under small stressed volumes, Prog. Mater. Sci. 82, 118 (2016).
|
[16] |
H. Tang, K. W. Schwarz, and H. D. Espinosa, Dislocation-source shutdown and the plastic behavior of single-crystal micropillars, Phys. Rev. Lett. 100, 185503 18518390(2008).
|
[17] |
P. Lin, Z. Liu, Y. Cui, and Z. Zhuang, A stochastic crystal plasticity model with size-dependent and intermittent strain bursts characteristics at micron scale, Int. J. Solids Struct. 69-70, 267 (2015).
|
[18] |
T. Crosby, G. Po, C. Erel, and N. Ghoniem, The origin of strain avalanches in sub-micron plasticity of fcc metals, Acta Mater. 89, 123 (2015).
|
[19] |
Y. Cui, G. Po, and N. Ghoniem, Influence of loading control on strain bursts and dislocation avalanches at the nanometer and micrometer scale, Phys. Rev. B 95, 064103 (2017).
|
[20] |
A. Sedlmayr, E. Bitzek, D. S. Gianola, G. Richter, R. Mönig, and O. Kraft, Existence of two twinning-mediated plastic deformation modes in Au nanowhiskers, Acta Mater. 60, 3985 (2012).
|
[21] |
X. Zhang, X. Zhang, F. Shang, and Q. Li, Second-order work and strain burst in single-crystalline micropillar plasticity, Int. J. Plast. 77, 192 (2016).
|
[22] |
K. S. Ng, and A. H. W. Ngan, Stochastic nature of plasticity of aluminum micro-pillars, Acta Mater. 56, 1712 (2008).
|
[23] |
D. M. Dimiduk, C. Woodward, R. Lesar, and M. D. Uchic, Scale-free intermittent flow in crystal plasticity, Science 312, 1188 16728635(2006).
|
[24] |
D. M. Dimiduk, M. D. Uchic, and T. A. Parthasarathy, Size-affected single-slip behavior of pure nickel microcrystals, Acta Mater. 53, 4065 (2005).
|
[25] |
M. D. Uchic, D. M. Dimiduk, J. N. Florando, and W. D. Nix, Sample dimensions influence strength and crystal plasticity, Science 305, 986 15310897(2004).
|
[26] |
M. D. Uchic, and D. M. Dimiduk, A methodology to investigate size scale effects in crystalline plasticity using uniaxial compression testing, Mater. Sci. Eng.-A 400-401, 268 (2005).
|
[27] |
W. M. Mook, C. Niederberger, M. Bechelany, L. Philippe, and J. Michler, Compression of freestanding gold nanostructures: From stochastic yield to predictable flow, Nanotechnology 21, 055701 20023305(2010).
|
[28] |
D. G. Xie, R. R. Zhang, Z. Y. Nie, J. Li, E. Ma, J. Li, and Z. W. Shan, Deformation mechanism maps for sub-micron sized aluminum, Acta Mater. 188, 570 (2020).
|
[29] |
S. S. Brenner, Plastic deformation of copper and silver whiskers, J. Appl. Phys. 28, 1023 (1957).
|
[30] |
S. S. Brenner, Tensile strength of whiskers, J. Appl. Phys. 27, 1484 (1956).
|
[31] |
L. A. Zepeda-Ruiz, A. Stukowski, T. Oppelstrup, and V. V. Bulatov, Probing the limits of metal plasticity with molecular dynamics simulations, Nature 550, 492 28953878(2017).
|
[32] |
D. Krajcinovic, and M. A. G. Silva, Statistical aspects of the continuous damage theory, Int. J. Solids Struct. 18, 551 (1982).
|