Citation: | Y. Yang, X. Guo, L. Ling, K. Wang, and W. Zhai,Effect of gauge corner lubrication on wheel/rail non-Hertzian contact and rail surface damage on the curves. Acta Mech. Sin., 2022, 38, |
[1] |
W. Zhai, X. Jin, Z. Wen, and X. Zhao, Wear problems of high-speed wheel/rail systems: Observations, causes, and countermeasures in China, Appl. Mech. Rev. 72, 060801 (2020).
|
[2] |
L. Jing, K. Wang, and W. Zhai, Impact vibration behavior of railway vehicles: a state-of-the-art overview, Acta Mech. Sin. 37, 1193 (2021).
|
[3] |
N. Burgelman, Z. Li, and R. Dollevoet, A new rolling contact method applied to conformal contact and the train-turnout interaction, Wear 321, 94 (2014).
|
[4] |
S. S. Ding, Q. Li, A. Q. Tian, J. Du, and J. L. Liu, Aerodynamic design on high-speed trains, Acta Mech. Sin. 32, 215 (2016).
|
[5] |
S. R. Lewis, R. Lewis, G. Evans, and L. E. Buckley-Johnstone, Assessment of railway curve lubricant performance using a twin-disc tester, Wear 314, 205 (2014).
|
[6] |
V. Reddy, G. Chattopadhyay, P. O. Larsson-Kråik, and D. J. Hargreaves, Modelling and analysis of rail maintenance cost, Int. J. Prod. Eco. 105, 475 (2007).
|
[7] |
C. Hardwick, R. Lewis, and D. T. Eadie, Wheel and rail wear—Understanding the effects of water and grease, Wear 314, 198 (2014).
|
[8] |
W. J. Wang, R. Lewis, B. Yang, L. C. Guo, Q. Y. Liu, and M. H. Zhu, Wear and damage transitions of wheel and rail materials under various contact conditions, Wear 362-363, 146 (2016).
|
[9] |
H. Chen, S. Fukagai, Y. Sone, T. Ban, and A. Namura, Assessment of lubricant applied to wheel/rail interface in curves, Wear 314, 228 (2014).
|
[10] |
Y. Li, Z. Ren, R. Enblom, S. Stichel, and G. Li, Wheel wear prediction on a high-speed train in China, Vehicle Syst. Dyn. 58, 1839 (2019).
|
[11] |
E. Butini, L. Marini, M. Meacci, E. Meli, A. Rindi, X. J. Zhao, and W. J. Wang, An innovative model for the prediction of wheel-Rail wear and rolling contact fatigue, Wear 436-437, 203025 (2019).
|
[12] |
Y. Ye, Y. Sun, D. Shi, B. Peng, and M. Hecht, A wheel wear prediction model of non-Hertzian wheel-rail contact considering wheelset yaw: Comparison between simulated and field test results, Wear 474-475, 203715 (2021).
|
[13] |
O. Arias-Cuevas, Z. Li, R. I. Popovici, and D. J. Schipper, Simulation of curving behaviour under high traction in lubricated wheel-rail contacts, Vehicle Syst. Dyn. 48, 299 (2010).
|
[14] |
G. I. Alarcón, N. Burgelman, J. M. Meza, A. Toro, and Z. Li, The influence of rail lubrication on energy dissipation in the wheel/rail contact: A comparison of simulation results with field measurements, Wear 330-331, 533 (2015).
|
[15] |
S. A. Khan, I. Persson, J. Lundberg, and C. Stenström, Prediction of top-of-rail friction control effects on rail RCF suppressed by wear, Wear 380-381, 106 (2017).
|
[16] |
B. Liu, S. Bruni, and E. Vollebregt, A non-Hertzian method for solving wheel-rail normal contact problem taking into account the effect of yaw, Vehicle Syst. Dyn. 54, 1226 (2016).
|
[17] |
B. Zhu, J. Zeng, D. Zhang, and Y. Wu, A non-Hertzian wheel-rail contact model considering wheelset yaw and its application in wheel wear prediction, Wear 432-433, 202958 (2019).
|
[18] |
Y. Sun, W. Zhai, Y. Ye, L. Zhu, and Y. Guo, A simplified model for solving wheel-rail non-Hertzian normal contact problem under the influence of yaw angle, Int. J. Mech. Sci. 174, 105554 (2020).
|
[19] |
|
[20] |
Y. Yang, X. Guo, Y. Sun, L. Ling, T. Zhang, K. Wang, and W. Zhai, Non-Hertzian contact analysis of heavy-haul locomotive wheel/rail dynamic interactions under changeable friction conditions, Vehicle Syst. Dyn. 1 (2021).
|
[21] |
L. Ling, X. B. Xiao, and X. S. Jin, Development of a simulation model for dynamic derailment analysis of high-speed trains, Acta Mech. Sin. 30, 860 (2014).
|
[22] |
N. Burgelman, M. S. Sichani, R. Enblom, M. Berg, Z. Li, and R. Dollevoet, Influence of wheel-rail contact modelling on vehicle dynamic simulation, Vehicle Syst. Dyn. 53, 1190 (2014).
|
[23] |
J. Piotrowski, and W. Kik, A simplified model of wheel/rail contact mechanics for non-Hertzian problems and its application in rail vehicle dynamic simulations, Vehicle Syst. Dyn. 46, 27 (2008).
|
[24] |
X. Quost, M. Sebes, A. Eddhahak, J. B. Ayasse, H. Chollet, P. E. Gautier, and F. Thouverez, Assessment of a semi-Hertzian method for determination of wheel-rail contact patch, Vehicle Syst. Dyn. 44, 789 (2006).
|
[25] |
E. Meli, S. Magheri, and M. Malvezzi, Development and implementation of a differential elastic wheel-rail contact model for multibody applications, Vehicle Syst. Dyn. 49, 969 (2011).
|
[26] |
M. S. Sichani, R. Enblom, and M. Berg, A novel method to model wheel-rail normal contact in vehicle dynamics simulation, Vehicle Syst. Dyn. 52, 1752 (2014).
|
[27] |
M. Spiryagin, M. Sajjad, D. Nielsen, Y. Q. Sun, D. Raman, and G. Chattopadhyay, Research methodology for evaluation of top-of-rail friction management in Australian heavy haul networks, Proc. Instit. Mech. Eng. Part F-J. Rail Rapid Transit 228, 631 (2013).
|
[28] |
M. S. Sichani, R. Enblom, and M. Berg, A fast wheel-rail contact model for application to damage analysis in vehicle dynamics simulation, Wear 366-367, 123 (2016).
|
[29] |
U. Spangenberg, R. D. Fröhling, and P. S. Els, Influence of wheel and rail profile shape on the initiation of rolling contact fatigue cracks at high axle loads, Vehicle Syst. Dyn. 54, 638 (2016).
|
[30] |
S. Hossein-Nia, M. S. Sichani, S. Stichel, and C. Casanueva, Wheel life prediction model—An alternative to the FASTSIM algorithm for RCF, Vehicle Syst. Dyn. 56, 1051 (2018).
|