Volume 38 Issue 3
Feb 2022
Turn off MathJax
Article Contents
Y. Yang, X. Guo, L. Ling, K. Wang, and W. Zhai,Effect of gauge corner lubrication on wheel/rail non-Hertzian contact and rail surface damage on the curves. Acta Mech. Sin., 2022, 38, http://www.w3.org/1999/xlink' xlink:href='https://doi.org/10.1007/s10409-022-09002-x'>https://doi.org/10.1007/s10409-022-09002-x
Citation: Y. Yang, X. Guo, L. Ling, K. Wang, and W. Zhai,Effect of gauge corner lubrication on wheel/rail non-Hertzian contact and rail surface damage on the curves. Acta Mech. Sin., 2022, 38, http://www.w3.org/1999/xlink" xlink:href="https://doi.org/10.1007/s10409-022-09002-x">https://doi.org/10.1007/s10409-022-09002-x

Effect of gauge corner lubrication on wheel/rail non-Hertzian contact and rail surface damage on the curves

doi: 10.1007/s10409-022-09002-x
Funds:

the National Key Research and Development Program of China Grant

the National Natural Science Foundation of China Grant

and the State Key Laboratory of Traction Power Grant

More Information
  • Corresponding author: Wang Kaiyun, E-mail address: kywang@swjtu.edu.cn (Kaiyun Wang)
  • Accepted Date: 27 Dec 2021
  • Available Online: 01 Aug 2022
  • Publish Date: 23 Feb 2022
  • Issue Publish Date: 01 Mar 2022
  • Wheel/rail rolling contact is a highly nonlinear issue affected by the complicated operating environment (including adhesion conditions and motion attitude of train and track system), which is a fundamental topic for further insight into wheel/rail tread wear and rolling contact fatigue (RCF). The rail gauge corner lubrication (RGCL) devices have been installed on the metro outer rail to mitigate its wear on the curved tracks. This paper presents an investigation into the influence of RGCL on wheel/rail non-Hertzian contact and rail surface RCF on the curves through numerical analysis. To this end, a metro vehicle-slab track interaction dynamics model is extended, in which an accurate wheel/rail non-Hertzian contact algorithm is implemented. The influence of RGCL on wheel/rail creep, contact stress and adhesion-slip distributions and fatigue damage of rail surface are evaluated. The simulation results show that RGCL can markedly affect wheel/rail contact on the tight curves. It is further suggested that RGCL can reduce rail surface RCF on tight curves through the wheel/rail low-friction interactions.

     

  • loading
  • [1]
    W. Zhai, X. Jin, Z. Wen, and X. Zhao, Wear problems of high-speed wheel/rail systems: Observations, causes, and countermeasures in China, Appl. Mech. Rev. 72, 060801 (2020).
    [2]
    L. Jing, K. Wang, and W. Zhai, Impact vibration behavior of railway vehicles: a state-of-the-art overview, Acta Mech. Sin. 37, 1193 (2021).
    [3]
    N. Burgelman, Z. Li, and R. Dollevoet, A new rolling contact method applied to conformal contact and the train-turnout interaction, Wear 321, 94 (2014).
    [4]
    S. S. Ding, Q. Li, A. Q. Tian, J. Du, and J. L. Liu, Aerodynamic design on high-speed trains, Acta Mech. Sin. 32, 215 (2016).
    [5]
    S. R. Lewis, R. Lewis, G. Evans, and L. E. Buckley-Johnstone, Assessment of railway curve lubricant performance using a twin-disc tester, Wear 314, 205 (2014).
    [6]
    V. Reddy, G. Chattopadhyay, P. O. Larsson-Kråik, and D. J. Hargreaves, Modelling and analysis of rail maintenance cost, Int. J. Prod. Eco. 105, 475 (2007).
    [7]
    C. Hardwick, R. Lewis, and D. T. Eadie, Wheel and rail wear—Understanding the effects of water and grease, Wear 314, 198 (2014).
    [8]
    W. J. Wang, R. Lewis, B. Yang, L. C. Guo, Q. Y. Liu, and M. H. Zhu, Wear and damage transitions of wheel and rail materials under various contact conditions, Wear 362-363, 146 (2016).
    [9]
    H. Chen, S. Fukagai, Y. Sone, T. Ban, and A. Namura, Assessment of lubricant applied to wheel/rail interface in curves, Wear 314, 228 (2014).
    [10]
    Y. Li, Z. Ren, R. Enblom, S. Stichel, and G. Li, Wheel wear prediction on a high-speed train in China, Vehicle Syst. Dyn. 58, 1839 (2019).
    [11]
    E. Butini, L. Marini, M. Meacci, E. Meli, A. Rindi, X. J. Zhao, and W. J. Wang, An innovative model for the prediction of wheel-Rail wear and rolling contact fatigue, Wear 436-437, 203025 (2019).
    [12]
    Y. Ye, Y. Sun, D. Shi, B. Peng, and M. Hecht, A wheel wear prediction model of non-Hertzian wheel-rail contact considering wheelset yaw: Comparison between simulated and field test results, Wear 474-475, 203715 (2021).
    [13]
    O. Arias-Cuevas, Z. Li, R. I. Popovici, and D. J. Schipper, Simulation of curving behaviour under high traction in lubricated wheel-rail contacts, Vehicle Syst. Dyn. 48, 299 (2010).
    [14]
    G. I. Alarcón, N. Burgelman, J. M. Meza, A. Toro, and Z. Li, The influence of rail lubrication on energy dissipation in the wheel/rail contact: A comparison of simulation results with field measurements, Wear 330-331, 533 (2015).
    [15]
    S. A. Khan, I. Persson, J. Lundberg, and C. Stenström, Prediction of top-of-rail friction control effects on rail RCF suppressed by wear, Wear 380-381, 106 (2017).
    [16]
    B. Liu, S. Bruni, and E. Vollebregt, A non-Hertzian method for solving wheel-rail normal contact problem taking into account the effect of yaw, Vehicle Syst. Dyn. 54, 1226 (2016).
    [17]
    B. Zhu, J. Zeng, D. Zhang, and Y. Wu, A non-Hertzian wheel-rail contact model considering wheelset yaw and its application in wheel wear prediction, Wear 432-433, 202958 (2019).
    [18]
    Y. Sun, W. Zhai, Y. Ye, L. Zhu, and Y. Guo, A simplified model for solving wheel-rail non-Hertzian normal contact problem under the influence of yaw angle, Int. J. Mech. Sci. 174, 105554 (2020).
    [19]
    W. M.Zhai, Vehicle-Track Coupled Dynamics (Springer, Singapore, 2020)
    [20]
    Y. Yang, X. Guo, Y. Sun, L. Ling, T. Zhang, K. Wang, and W. Zhai, Non-Hertzian contact analysis of heavy-haul locomotive wheel/rail dynamic interactions under changeable friction conditions, Vehicle Syst. Dyn. 1 (2021).
    [21]
    L. Ling, X. B. Xiao, and X. S. Jin, Development of a simulation model for dynamic derailment analysis of high-speed trains, Acta Mech. Sin. 30, 860 (2014).
    [22]
    N. Burgelman, M. S. Sichani, R. Enblom, M. Berg, Z. Li, and R. Dollevoet, Influence of wheel-rail contact modelling on vehicle dynamic simulation, Vehicle Syst. Dyn. 53, 1190 (2014).
    [23]
    J. Piotrowski, and W. Kik, A simplified model of wheel/rail contact mechanics for non-Hertzian problems and its application in rail vehicle dynamic simulations, Vehicle Syst. Dyn. 46, 27 (2008).
    [24]
    X. Quost, M. Sebes, A. Eddhahak, J. B. Ayasse, H. Chollet, P. E. Gautier, and F. Thouverez, Assessment of a semi-Hertzian method for determination of wheel-rail contact patch, Vehicle Syst. Dyn. 44, 789 (2006).
    [25]
    E. Meli, S. Magheri, and M. Malvezzi, Development and implementation of a differential elastic wheel-rail contact model for multibody applications, Vehicle Syst. Dyn. 49, 969 (2011).
    [26]
    M. S. Sichani, R. Enblom, and M. Berg, A novel method to model wheel-rail normal contact in vehicle dynamics simulation, Vehicle Syst. Dyn. 52, 1752 (2014).
    [27]
    M. Spiryagin, M. Sajjad, D. Nielsen, Y. Q. Sun, D. Raman, and G. Chattopadhyay, Research methodology for evaluation of top-of-rail friction management in Australian heavy haul networks, Proc. Instit. Mech. Eng. Part F-J. Rail Rapid Transit 228, 631 (2013).
    [28]
    M. S. Sichani, R. Enblom, and M. Berg, A fast wheel-rail contact model for application to damage analysis in vehicle dynamics simulation, Wear 366-367, 123 (2016).
    [29]
    U. Spangenberg, R. D. Fröhling, and P. S. Els, Influence of wheel and rail profile shape on the initiation of rolling contact fatigue cracks at high axle loads, Vehicle Syst. Dyn. 54, 638 (2016).
    [30]
    S. Hossein-Nia, M. S. Sichani, S. Stichel, and C. Casanueva, Wheel life prediction model—An alternative to the FASTSIM algorithm for RCF, Vehicle Syst. Dyn. 56, 1051 (2018).
  • 加载中

Catalog

    Figures(21)  / Tables(2)

    Article Metrics

    Article views(42) PDF downloads(0) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return