Volume 38 Issue 3
Feb 2022
Turn off MathJax
Article Contents
Y. Wang, C. Li, H. Dong, J. Yu, Y. Yan, X. Wu, Y. Wang, P. Li, X. Wei, and W. Chen,Mechanosensation of osteocyte with collagen hillocks and primary cilia under pressure and electric field stimulation. Acta Mech. Sin., 2022, 38, http://www.w3.org/1999/xlink' xlink:href='https://doi.org/10.1007/s10409-022-09004-x'>https://doi.org/10.1007/s10409-022-09004-x
Citation: Y. Wang, C. Li, H. Dong, J. Yu, Y. Yan, X. Wu, Y. Wang, P. Li, X. Wei, and W. Chen,Mechanosensation of osteocyte with collagen hillocks and primary cilia under pressure and electric field stimulation. Acta Mech. Sin., 2022, 38, http://www.w3.org/1999/xlink" xlink:href="https://doi.org/10.1007/s10409-022-09004-x">https://doi.org/10.1007/s10409-022-09004-x

Mechanosensation of osteocyte with collagen hillocks and primary cilia under pressure and electric field stimulation

doi: 10.1007/s10409-022-09004-x
Funds:

the National Natural Science Foundation of China Grant

and China Postdoctoral Science Foundation Grant

More Information
  • Mechanosensors are the most important organelles for osteocytes to perceive the changes of surrounding mechanical environment. To evaluate the biomechanical effectiveness of collagen hillock, cell process and primary cilium in lacunar-canalicular system (LCS), we developed pressure-electricity-structure interaction models by using the COMSOL Multiphysics software to characterize the deformation of collagen hillocks- and primary cilium-based mechanosensors in osteocyte under fluid flow and electric field stimulation. And mechanical signals (pore pressure, fluid velocity, stress, deformation) were analyzed in LCS. The effects of changes in the elastic modulus of collagen hillocks, the number and location of cell processes, the length and location of primary cilia on the mechanosensitivity and the overall poroelastic responses of osteocytes were studied. These models predict that the presence of primary cilium and collagen hillocks resulted in significant stress amplifications (one and two orders of magnitude larger than osteocyte body) on the osteocyte. The growth of cell process along the long axis could stimulate osteocyte to a higher level than along the short axis. The Mises stress of the basal body of primary cilia near the top of osteocyte is 8 Pa greater than that near the bottom. However, the presence of collagen hillocks and primary cilium does not affect the mechanical signal of the whole osteocyte body. The established model can be used for studying the mechanism of bone mechanotransduction at the multiscale level.

     

  • loading
  • [1]
    L. Wang, Solute transport in the bone lacunar-canalicular system (LCS), Curr Osteoporos Rep 16, 32 29349685(2018).
    [2]
    I. P. Geoghegan, D. A. Hoey, and L. M. McNamara, Integrins in osteocyte biology and mechanotransduction, Curr Osteoporos Rep 17, 195 31250372(2019).
    [3]
    M. Prideaux, D. M. Findlay, and G. J. Atkins, Osteocytes: the master cells in bone remodelling, Curr. Opin. Pharmacol. 28, 24 26927500(2016).
    [4]
    L. Qin, W. Liu, H. Cao, and G. Xiao, Molecular mechanosensors in osteocytes, Bone Res 8, 23 32550039(2020).
    [5]
    Y. Han, X. You, W. Xing, Z. Zhang, and W. Zou, Paracrine and endocrine actions of bone—the functions of secretory proteins from osteoblasts, osteocytes, and osteoclasts, Bone Res 6, 16 29844945(2018).
    [6]
    C. R. Jacobs, S. Temiyasathit, and A. B. Castillo, Osteocyte mechanobiology and pericellular mechanics, Annu. Rev. Biomed. Eng. 12, 369 20617941(2010).
    [7]
    M. P. Yavropoulou, and J. G. Yovos, The molecular basis of bone mechanotransduction, J Musculoskelet Neuronal Interact 16, 221 (2016)
    [8]
    S. C. Goetz, and K. V. Anderson, The primary cilium: a signalling centre during vertebrate development, Nat Rev Genet 11, 331 20395968(2010).
    [9]
    H. Saternos, S. Ley, and W. AbouAlaiwi, Primary cilia and calcium signaling interactions, Int. J. Mol. Sci. 21, 7109 32993148(2020).
    [10]
    S. Temiyasathit, and C. R. Jacobs, Osteocyte primary cilium and its role in bone mechanotransduction, Ann. New York Acad. Sci. 1192, 422 20392268(2010).
    [11]
    Y. Wang, L. M. McNamara, M. B. Schaffler, and S. Weinbaum, A model for the role of integrins in flow induced mechanotransduction in osteocytes, Proc. Natl. Acad. Sci. USA 104, 15941 17895377(2007).
    [12]
    N. R. Gould, O. M. Torre, J. M. Leser, and J. P. Stains, The cytoskeleton and connected elements in bone cell mechano-transduction, Bone 149, 115971 33892173(2021).
    [13]
    J. Klein-Nulend, R. G. Bacabac, and A. D. Bakker, Mechanical loading and how it affects bone cells: the role of the osteocyte cytoskeleton in maintaining our skeleton, eCM 24, 278 23007912(2012).
    [14]
    G. J. Pazour, and G. B. Witman, The vertebrate primary cilium is a sensory organelle, Curr. Opin. Cell Biol. 15, 105 (2003).
    [15]
    F. Tao, T. Jiang, H. Tao, H. Cao, and W. Xiang, Primary cilia: Versatile regulator in cartilage development, Cell Prolif 53, e12765 32034931(2020).
    [16]
    A. Resnick, and U. Hopfer, Force-response considerations in ciliary mechanosensation, Biophys.l J. 93, 1380 17526573(2007).
    [17]
    J. F. Whitfield, Primary cilium—is it an osteocyte's strain-sensing flowmeter?, J. Cell. Biochem. 89, 233 12704786(2003).
    [18]
    R. Osumi, Z. Wang, Y. Ishihara, N. Odagaki, T. Iimura, and H. Kamioka, Changes in the intra- and peri-cellular sclerostin distribution in lacuno-canalicular system induced by mechanical unloading, J Bone Miner Metab 39, 148 32844318(2021).
    [19]
    I. Kalajzic, B. G. Matthews, E. Torreggiani, M. A. Harris, P. Divieti Pajevic, and S. E. Harris, In vitroin vivo, Bone 54, 296 23072918(2013).
    [20]
    R. Kumar, A. K. Tiwari, D. Tripathi, N. V. Shrivas, and F. Nizam, Canalicular fluid flow induced by loading waveforms: A comparative analysis, J. Theor. Biol. 471, 59 30930062(2019).
    [21]
    T. Sato, S. Verma, C. D. C. Andrade, M. Omeara, N. Campbell, J. S. Wang, M. Cetinbas, A. Lang, B. J. Ausk, D. J. Brooks, R. I. Sadreyev, H. M. Kronenberg, D. Lagares, Y. Uda, P. D. Pajevic, M. L. Bouxsein, T. S. Gross, and M. N. Wein, A FAK/HDAC5 signaling axis controls osteocyte mechanotransduction, Nat. Commun. 11, 3282 32612176(2020).
    [22]
    E. R. Moore, Y. X. Zhu, H. S. Ryu, and C. R. Jacobs, Periosteal progenitors contribute to load-induced bone formation in adult mice and require primary cilia to sense mechanical stimulation, Stem Cell Res Ther 9, 190 29996901(2018).
    [23]
    S. W. Verbruggen, T. J. Vaughan, and L. M. McNamara, Fluid flow in the osteocyte mechanical environment: a fluid-structure interaction approach, Biomech Model Mechanobiol 13, 85 23567965(2014).
    [24]
    S. R. McGlashan, C. G. Jensen, and C. A. Poole, Localization of extracellular matrix receptors on the chondrocyte primary cilium, J Histochem Cytochem. 54, 1005 16651393(2006).
    [25]
    L. B. Pedersen, J.L. Rosenbaum, Chapter Two Intraflagellar Transport (IFT), Ciliary Function in Mammalian Development, 2008, pp. 23-61, doi: 10.1016/S0070-2153(08)00802-8
    [26]
    L. Leppik, K. M. C. Oliveira, M. B. Bhavsar, and J. H. Barker, Electrical stimulation in bone tissue engineering treatments, Eur J Trauma Emerg Surg 46, 231 32078704(2020).
    [27]
    D. Chen, D. Norris, and Y. Ventikos, The active and passive ciliary motion in the embryo node: a computational fluid dynamics model, J. BioMech. 42, 210 19121830(2009).
    [28]
    T. J. Vaughan, C. A. Mullen, S. W. Verbruggen, and L. M. McNamara, Bone cell mechanosensation of fluid flow stimulation: a fluid-structure interaction model characterising the role integrin attachments and primary cilia, Biomech. Model Mechanobiol. 14, 703 25399300(2015).
    [29]
    Z. Wang, X. Wu, K. Chen, Y. Xue, N. Wang, T. Zhao, W. Yu, Y. Wang, and W. Chen, A theoretical microfluidic flow model for the cell culture chamber under the pressure gradient and electric field driven loads, Lixue Xuebao/Chin. J. Theor. Appl. Mech. 50, 124 (2018)
    [30]
    Z. H. Jin, J. G. Janes, and M. L. Peterson, A chemo-poroelastic analysis of mechanically induced fluid and solute transport in an osteonal cortical bone, Ann Biomed Eng 49, 299 32514933(2021).
    [31]
    A. D. Miller, A. Chama, T. M. Louw, A. Subramanian, and H. J. Viljoen, Frequency sensitive mechanism in low-intensity ultrasound enhanced bioeffects, PLoS ONE 12, e0181717 28763448(2017).
    [32]
    P. S. Mathieu, J. C. Bodle, and E. G. Loboa, Primary cilium mechanotransduction of tensile strain in 3D culture: Finite element analyses of strain amplification caused by tensile strain applied to a primary cilium embedded in a collagen matrix, J. BioMech. 47, 2211 24831236(2014).
    [33]
    L. You, S. C. Cowin, M. B. Schaffler, and S. Weinbaum, A model for strain amplification in the actin cytoskeleton of osteocytes due to fluid drag on pericellular matrix, J. BioMech. 34, 1375 (2001).
    [34]
    M. M. Thi, S. O. Suadicani, M. B. Schaffler, S. Weinbaum, and D. C. Spray, Mechanosensory responses of osteocytes to physiological forces occur along processes and not cell body and require αVβ3 integrin, Proc. Natl. Acad. Sci. USA 110, 21012 24324138(2013).
    [35]
    L. M. McNamara, R. J. Majeska, S. Weinbaum, V. Friedrich, and M. B. Schaffler, Attachment of osteocyte cell processes to the bone matrix, Anat Rec 292, 355 19248169(2009).
    [36]
    S. W. Verbruggen, T. J. Vaughan, and L. M. McNamara, Mechanisms of osteocyte stimulation in osteoporosis, J. Mech. Behav. BioMed. Mater. 62, 158 27203269(2016).
    [37]
    T. Y. Besschetnova, E. Kolpakova-Hart, Y. Guan, J. Zhou, B. R. Olsen, and J. V. Shah, Identification of signaling pathways regulating primary cilium length and flow-mediated adaptation, Curr. Biol. 20, 182 20096584(2010).
    [38]
    I. P. Geoghegan, L. M. McNamara, and D. A. Hoey, Estrogen withdrawal alters cytoskeletal and primary ciliary dynamics resulting in increased Hedgehog and osteoclastogenic paracrine signalling in osteocytes, Sci. Rep. 11, 9272 33927279(2021).
    [39]
    R. Oftadeh, M. Perez-Viloria, J. C. Villa-Camacho, A. Vaziri, and A. Nazarian, Biomechanics and mechanobiology of trabecular bone: a review, J. BioMech. Eng. 137, 010802 25412137(2015).
    [40]
    A. Abbasszadeh Rad, and B. Vahidi, A finite elements study on the role of primary cilia in sensing mechanical stimuli to cells by calculating their response to the fluid flow, J. Comput. Appl. Mech. 47, 35 (2016)
  • 加载中

Catalog

    Figures(18)  / Tables(3)

    Article Metrics

    Article views(45) PDF downloads(0) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return