Citation: | Y. Wang, C. Li, H. Dong, J. Yu, Y. Yan, X. Wu, Y. Wang, P. Li, X. Wei, and W. Chen,Mechanosensation of osteocyte with collagen hillocks and primary cilia under pressure and electric field stimulation. Acta Mech. Sin., 2022, 38, |
[1] |
L. Wang, Solute transport in the bone lacunar-canalicular system (LCS), Curr Osteoporos Rep 16, 32 29349685(2018).
|
[2] |
I. P. Geoghegan, D. A. Hoey, and L. M. McNamara, Integrins in osteocyte biology and mechanotransduction, Curr Osteoporos Rep 17, 195 31250372(2019).
|
[3] |
M. Prideaux, D. M. Findlay, and G. J. Atkins, Osteocytes: the master cells in bone remodelling, Curr. Opin. Pharmacol. 28, 24 26927500(2016).
|
[4] |
L. Qin, W. Liu, H. Cao, and G. Xiao, Molecular mechanosensors in osteocytes, Bone Res 8, 23 32550039(2020).
|
[5] |
Y. Han, X. You, W. Xing, Z. Zhang, and W. Zou, Paracrine and endocrine actions of bone—the functions of secretory proteins from osteoblasts, osteocytes, and osteoclasts, Bone Res 6, 16 29844945(2018).
|
[6] |
C. R. Jacobs, S. Temiyasathit, and A. B. Castillo, Osteocyte mechanobiology and pericellular mechanics, Annu. Rev. Biomed. Eng. 12, 369 20617941(2010).
|
[7] |
|
[8] |
S. C. Goetz, and K. V. Anderson, The primary cilium: a signalling centre during vertebrate development, Nat Rev Genet 11, 331 20395968(2010).
|
[9] |
H. Saternos, S. Ley, and W. AbouAlaiwi, Primary cilia and calcium signaling interactions, Int. J. Mol. Sci. 21, 7109 32993148(2020).
|
[10] |
S. Temiyasathit, and C. R. Jacobs, Osteocyte primary cilium and its role in bone mechanotransduction, Ann. New York Acad. Sci. 1192, 422 20392268(2010).
|
[11] |
Y. Wang, L. M. McNamara, M. B. Schaffler, and S. Weinbaum, A model for the role of integrins in flow induced mechanotransduction in osteocytes, Proc. Natl. Acad. Sci. USA 104, 15941 17895377(2007).
|
[12] |
N. R. Gould, O. M. Torre, J. M. Leser, and J. P. Stains, The cytoskeleton and connected elements in bone cell mechano-transduction, Bone 149, 115971 33892173(2021).
|
[13] |
J. Klein-Nulend, R. G. Bacabac, and A. D. Bakker, Mechanical loading and how it affects bone cells: the role of the osteocyte cytoskeleton in maintaining our skeleton, eCM 24, 278 23007912(2012).
|
[14] |
G. J. Pazour, and G. B. Witman, The vertebrate primary cilium is a sensory organelle, Curr. Opin. Cell Biol. 15, 105 (2003).
|
[15] |
F. Tao, T. Jiang, H. Tao, H. Cao, and W. Xiang, Primary cilia: Versatile regulator in cartilage development, Cell Prolif 53, e12765 32034931(2020).
|
[16] |
A. Resnick, and U. Hopfer, Force-response considerations in ciliary mechanosensation, Biophys.l J. 93, 1380 17526573(2007).
|
[17] |
J. F. Whitfield, Primary cilium—is it an osteocyte's strain-sensing flowmeter?, J. Cell. Biochem. 89, 233 12704786(2003).
|
[18] |
R. Osumi, Z. Wang, Y. Ishihara, N. Odagaki, T. Iimura, and H. Kamioka, Changes in the intra- and peri-cellular sclerostin distribution in lacuno-canalicular system induced by mechanical unloading, J Bone Miner Metab 39, 148 32844318(2021).
|
[19] |
I. Kalajzic, B. G. Matthews, E. Torreggiani, M. A. Harris, P. Divieti Pajevic, and S. E. Harris, In vitroin vivo, Bone 54, 296 23072918(2013).
|
[20] |
R. Kumar, A. K. Tiwari, D. Tripathi, N. V. Shrivas, and F. Nizam, Canalicular fluid flow induced by loading waveforms: A comparative analysis, J. Theor. Biol. 471, 59 30930062(2019).
|
[21] |
T. Sato, S. Verma, C. D. C. Andrade, M. Omeara, N. Campbell, J. S. Wang, M. Cetinbas, A. Lang, B. J. Ausk, D. J. Brooks, R. I. Sadreyev, H. M. Kronenberg, D. Lagares, Y. Uda, P. D. Pajevic, M. L. Bouxsein, T. S. Gross, and M. N. Wein, A FAK/HDAC5 signaling axis controls osteocyte mechanotransduction, Nat. Commun. 11, 3282 32612176(2020).
|
[22] |
E. R. Moore, Y. X. Zhu, H. S. Ryu, and C. R. Jacobs, Periosteal progenitors contribute to load-induced bone formation in adult mice and require primary cilia to sense mechanical stimulation, Stem Cell Res Ther 9, 190 29996901(2018).
|
[23] |
S. W. Verbruggen, T. J. Vaughan, and L. M. McNamara, Fluid flow in the osteocyte mechanical environment: a fluid-structure interaction approach, Biomech Model Mechanobiol 13, 85 23567965(2014).
|
[24] |
S. R. McGlashan, C. G. Jensen, and C. A. Poole, Localization of extracellular matrix receptors on the chondrocyte primary cilium, J Histochem Cytochem. 54, 1005 16651393(2006).
|
[25] |
|
[26] |
L. Leppik, K. M. C. Oliveira, M. B. Bhavsar, and J. H. Barker, Electrical stimulation in bone tissue engineering treatments, Eur J Trauma Emerg Surg 46, 231 32078704(2020).
|
[27] |
D. Chen, D. Norris, and Y. Ventikos, The active and passive ciliary motion in the embryo node: a computational fluid dynamics model, J. BioMech. 42, 210 19121830(2009).
|
[28] |
T. J. Vaughan, C. A. Mullen, S. W. Verbruggen, and L. M. McNamara, Bone cell mechanosensation of fluid flow stimulation: a fluid-structure interaction model characterising the role integrin attachments and primary cilia, Biomech. Model Mechanobiol. 14, 703 25399300(2015).
|
[29] |
|
[30] |
Z. H. Jin, J. G. Janes, and M. L. Peterson, A chemo-poroelastic analysis of mechanically induced fluid and solute transport in an osteonal cortical bone, Ann Biomed Eng 49, 299 32514933(2021).
|
[31] |
A. D. Miller, A. Chama, T. M. Louw, A. Subramanian, and H. J. Viljoen, Frequency sensitive mechanism in low-intensity ultrasound enhanced bioeffects, PLoS ONE 12, e0181717 28763448(2017).
|
[32] |
P. S. Mathieu, J. C. Bodle, and E. G. Loboa, Primary cilium mechanotransduction of tensile strain in 3D culture: Finite element analyses of strain amplification caused by tensile strain applied to a primary cilium embedded in a collagen matrix, J. BioMech. 47, 2211 24831236(2014).
|
[33] |
L. You, S. C. Cowin, M. B. Schaffler, and S. Weinbaum, A model for strain amplification in the actin cytoskeleton of osteocytes due to fluid drag on pericellular matrix, J. BioMech. 34, 1375 (2001).
|
[34] |
M. M. Thi, S. O. Suadicani, M. B. Schaffler, S. Weinbaum, and D. C. Spray, Mechanosensory responses of osteocytes to physiological forces occur along processes and not cell body and require αVβ3 integrin, Proc. Natl. Acad. Sci. USA 110, 21012 24324138(2013).
|
[35] |
L. M. McNamara, R. J. Majeska, S. Weinbaum, V. Friedrich, and M. B. Schaffler, Attachment of osteocyte cell processes to the bone matrix, Anat Rec 292, 355 19248169(2009).
|
[36] |
S. W. Verbruggen, T. J. Vaughan, and L. M. McNamara, Mechanisms of osteocyte stimulation in osteoporosis, J. Mech. Behav. BioMed. Mater. 62, 158 27203269(2016).
|
[37] |
T. Y. Besschetnova, E. Kolpakova-Hart, Y. Guan, J. Zhou, B. R. Olsen, and J. V. Shah, Identification of signaling pathways regulating primary cilium length and flow-mediated adaptation, Curr. Biol. 20, 182 20096584(2010).
|
[38] |
I. P. Geoghegan, L. M. McNamara, and D. A. Hoey, Estrogen withdrawal alters cytoskeletal and primary ciliary dynamics resulting in increased Hedgehog and osteoclastogenic paracrine signalling in osteocytes, Sci. Rep. 11, 9272 33927279(2021).
|
[39] |
R. Oftadeh, M. Perez-Viloria, J. C. Villa-Camacho, A. Vaziri, and A. Nazarian, Biomechanics and mechanobiology of trabecular bone: a review, J. BioMech. Eng. 137, 010802 25412137(2015).
|
[40] |
|