Citation: | J. Zhao, B. Zhang, D. Liu, A. A. Konstantinidis, G. Kang, and X. Zhang,Generalized Aifantis strain gradient plasticity model with internal length scale dependence on grain size, sample size and strain. Acta Mech. Sin., 2022, 38, |
[1] |
|
[2] |
H. Gao, Mechanism-based strain gradient plasticity―I. Theory, J. Mech. Phys. Solids 47, 1239 (1999).
|
[3] |
S. H. Chen, and T. C. Wang, A new deformation theory with strain gradient effects, Int. J. Plast. 18, 971 (2002).
|
[4] |
M. E. Gurtin, A gradient theory of single-crystal viscoplasticity that accounts for geometrically necessary dislocations, J. Mech. Phys. Solids 50, 5 (2002).
|
[5] |
P. Gudmundson, A unified treatment of strain gradient plasticity, J. Mech. Phys. Solids 52, 1379 31611720(2004).
|
[6] |
Y. Huang, S. Qu, K. C. Hwang, M. Li, and H. Gao, A conventional theory of mechanism-based strain gradient plasticity, Int. J. Plast. 20, 753 (2004).
|
[7] |
G. Z. Voyiadjis, and R. K. Abu Al-Rub, Gradient plasticity theory with a variable length scale parameter, Int. J. Solids Struct. 42, 3998 (2005).
|
[8] |
Y. Wei, A new finite element method for strain gradient theories and applications to fracture analyses, Eur. J. Mech. A Solids 25, 897 (2006).
|
[9] |
R. K. Abu Al-Rub, and G. Z. Voyiadjis, A physically based gradient plasticity theory, Int. J. Plast. 22, 654 (2006).
|
[10] |
G. Z. Voyiadjis, and D. Faghihi, Thermo-mechanical strain gradient plasticity with energetic and dissipative length scales, Int. J. Plast. 30-31, 218 (2012).
|
[11] |
H. Ban, Z. Peng, D. Fang, Y. Yao, and S. Chen, A modified conventional theory of mechanism-based strain gradient plasticity considering both size and damage effects, Int. J. Solids Struct. 202, 384 (2020).
|
[12] |
J. W. Hutchinson, Generalizing J2 flow theory: Fundamental issues in strain gradient plasticity, Acta Mech. Sin. 28, 1078 (2012).
|
[13] |
F. Hua, and D. Liu, On dissipative gradient effect in higher-order strain gradient plasticity: the modelling of surface passivation, Acta Mech. Sin. 36, 840 (2020).
|
[14] |
J. R. Willis, Some forms and properties of models of strain-gradient plasticity, J. Mech. Phys. Solids 123, 348 (2019).
|
[15] |
G. Zhou, W. Jeong, E. R. Homer, D. T. Fullwood, M. G. Lee, J. H. Kim, H. Lim, H. Zbib, and R. H. Wagoner, A predictive strain-gradient model with no undetermined constants or length scales, J. Mech. Phys. Solids 145, 104178 (2020).
|
[16] |
P. Gudmundson, and C. F. O. Dahlberg, Isotropic strain gradient plasticity model based on self-energies of dislocations and the Taylor model for plastic dissipation, Int. J. Plast. 121, 1 (2019).
|
[17] |
N. A. Fleck, and J. R. Willis, Strain gradient plasticity: energetic or dissipative?, Acta Mech. Sin. 31, 465 (2015).
|
[18] |
E. C. Aifantis, On the microstructural origin of certain inelastic models, J. Eng. Mater. Tech. 106, 326 (1984).
|
[19] |
E. C. Aifantis, The physics of plastic deformation, Int. J. Plast. 3, 211 (1987).
|
[20] |
X. Zhang, X. Li, and H. Gao, Size and strain rate effects in tensile strength of penta-twinned Ag nanowires, Acta Mech. Sin. 33, 792 (2017).
|
[21] |
A. Panteghini, and L. Bardella, Modelling the cyclic torsion of polycrystalline micron-sized copper wires by distortion gradient plasticity, Philos. Mag. 100, 2352 (2020).
|
[22] |
F. Shuang, and K. E. Aifantis, Modelling dislocation-graphene interactions in a BCC Fe matrix by molecular dynamics simulations and gradient plasticity theory, Appl. Surf. Sci. 535, 147602 (2021).
|
[23] |
L. Wang, J. Xu, J. Wang, and B. L. Karihaloo, Nonlocal thermo-elastic constitutive relation of fibre-reinforced composites, Acta Mech. Sin. 36, 176 (2020).
|
[24] |
W. D. Nix, and H. Gao, Indentation size effects in crystalline materials: A law for strain gradient plasticity, J. Mech. Phys. Solids 46, 411 (1998).
|
[25] |
R. K. Abu Al-Rub, and G. Z. Voyiadjis, Analytical and experimental determination of the material intrinsic length scale of strain gradient plasticity theory from micro- and nano-indentation experiments, Int. J. Plast. 20, 1139 (2004).
|
[26] |
X. Zhang, and K. E. Aifantis, Examining the evolution of the internal length as a function of plastic strain, Mater. Sci. Eng. A 631, 27 (2015).
|
[27] |
J. Zhao, X. Zhang, A. A. Konstantinidis, and G. Kang, Correlating the internal length in strain gradient plasticity theory with the microstructure of material, Philos. Mag. Lett. 95, 340 (2015).
|
[28] |
D. Liu, and D. J. Dunstan, Material length scale of strain gradient plasticity: A physical interpretation, Int. J. Plast. 98, 156 (2017).
|
[29] |
J. Song, and Y. Wei, A method to determine material length scale parameters in elastic strain gradient theory, J. Appl. Mech. 87, 031010 (2020).
|
[30] |
C. F. O. Dahlberg, and M. Boåsen, Evolution of the length scale in strain gradient plasticity, Int. J. Plast. 112, 220 (2019).
|
[31] |
X. Zhang, K. E. Aifantis, J. Senger, D. Weygand, and M. Zaiser, Internal length scale and grain boundary yield strength in gradient models of polycrystal plasticity: How do they relate to the dislocation microstructure?, J. Mater. Res. 29, 2116 (2014).
|
[32] |
G. Z. Voyiadjis, and Y. Song, Strain gradient continuum plasticity theories: Theoretical, numerical and experimental investigations, Int. J. Plast. 121, 21 (2019).
|
[33] |
N. A. Fleck, G. M. Muller, M. F. Ashby, and J. W. Hutchinson, Strain gradient plasticity: Theory and experiment, Acta Metall. Mater. 42, 475 (1994).
|
[34] |
Z. Li, Y. He, J. Lei, S. Guo, D. Liu, and L. Wang, A standard experimental method for determining the material length scale based on modified couple stress theory, Int. J. Mech. Sci. 141, 198 (2018).
|
[35] |
J. S. Stölken, and A. G. Evans, A microbend test method for measuring the plasticity length scale, Acta Mater. 46, 5109 (1998).
|
[36] |
K. W. McElhaney, J. J. Vlassak, and W. D. Nix, Determination of indenter tip geometry and indentation contact area for depth-sensing indentation experiments, J. Mater. Res. 13, 1300 (1998).
|
[37] |
S. Guo, Y. He, J. Lei, Z. Li, and D. Liu, Individual strain gradient effect on torsional strength of electropolished microscale copper wires, Scripta Mater. 130, 124 (2017).
|
[38] |
S. P. Iliev, X. Chen, M. V. Pathan, and V. L. Tagarielli, Measurements of the mechanical response of Indium and of its size dependence in bending and indentation, Mater. Sci. Eng. A 683, 244 (2017).
|
[39] |
I. Tsagrakis, and E. C. Aifantis, Recent developments in gradient plasticity—Part I: formulation and size effects, J. Eng. Mater. Tech. 124, 352 (2002).
|
[40] |
|
[41] |
E. Martínez-Pañeda, V. S. Deshpande, C. F. Niordson, and N. A. Fleck, The role of plastic strain gradients in the crack growth resistance of metals, J. Mech. Phys. Solids 126, 136 (2019).
|
[42] |
D. Liu, Y. He, X. Tang, H. Ding, P. Hu, and P. Cao, Size effects in the torsion of microscale copper wires: Experiment and analysis, Scripta Mater. 66, 406 (2012).
|
[43] |
|
[44] |
|
[45] |
Z. Gan, Y. He, D. Liu, B. Zhang, and L. Shen, Hall-Petch effect and strain gradient effect in the torsion of thin gold wires, Scripta Mater. 87, 41 (2014).
|
[46] |
J. Zhao, X. Lu, F. Yuan, Q. Kan, S. Qu, G. Kang, and X. Zhang, Multiple mechanism based constitutive modeling of gradient nanograined material, Int. J. Plast. 125, 314 (2020).
|
[47] |
X. Lu, J. Zhao, C. Yu, Z. Li, Q. Kan, G. Kang, and X. Zhang, Cyclic plasticity of an interstitial high-entropy alloy: experiments, crystal plasticity modeling, and simulations, J. Mech. Phys. Solids 142, 103971 (2020).
|
[48] |
M. R. Begley, and J. W. Hutchinson, The mechanics of size-dependent indentation, J. Mech. Phys. Solids 46, 2049 (1998).
|
[49] |
M. A. Khorshidi, The material length scale parameter used in couple stress theories is not a material constant, Int. J. Eng. Sci. 133, 15 (2018).
|
[50] |
I. Groma, F. F. Csikor, and M. Zaiser, Spatial correlations and higher-order gradient terms in a continuum description of dislocation dynamics, Acta Mater. 51, 1271 (2003).
|
[51] |
L. P. Evers, W. A. M. Brekelmans, and M. G. D. Geers, Non-local crystal plasticity model with intrinsic SSD and GND effects, J. Mech. Phys. Solids 52, 2379 (2004).
|