Citation: | Y. Chen, and L. Dai,Failure behavior and criteria of metallic glasses. Acta Mech. Sin., 2022, 38, |
[1] |
F. Spaepen, A microscopic mechanism for steady state inhomogeneous flow in metallic glasses, Acta Metall. 25, 407 (1977).
|
[2] |
A. S. Argon, Plastic deformation in metallic glasses, Acta Metall. 27, 47 (1979).
|
[3] |
M. L. Falk, and J. S. Langer, Dynamics of viscoplastic deformation in amorphous solids, Phys. Rev. E 57, 7192 (1998).
|
[4] |
G. Biroli, In search of the perfect glass, Nat. Phys. 10, 555 (2014).
|
[5] |
C. P. Goodrich, A. J. Liu, and S. R. Nagel, Solids between the mechanical extremes of order and disorder, Nat. Phys. 10, 578 (2014).
|
[6] |
D. B. Miracle, A structural model for metallic glasses, Nat. Mater. 3, 697 15378050(2004).
|
[7] |
M. L. Falk, and J. S. Langer, Deformation and failure of amorphous, solidlike materials, Annu. Rev. Condens. Matter Phys. 2, 353 (2011).
|
[8] |
K. Kamrin, and E. Bouchbinder, Two-temperature continuum thermomechanics of deforming amorphous solids, J. Mech. Phys. Solids 73, 269 (2014).
|
[9] |
F. Spaepen, On the fracture morphology of metallic glasses, Acta Metall. 23, 615 (1975).
|
[10] |
A. S. Argon, and M. Salama, The mechanism of Fracture in Glassy materials capable of some inelastic deformation, Mater. Sci. Eng. 23, 219 (1976).
|
[11] |
C. Schuh, T. Hufnagel, and U. Ramamurty, Mechanical behavior of amorphous alloys, Acta Mater. 55, 4067 (2007).
|
[12] |
A. L. Greer, Y. Q. Cheng, and E. Ma, Shear bands in metallic glasses, Mater. Sci. Eng.-R-Rep. 74, 71 (2013).
|
[13] |
R. Raghavan, P. Murali, and U. Ramamurty, On factors influencing the ductile-to-brittle transition in a bulk metallic glass, Acta Mater. 57, 3332 (2009).
|
[14] |
Y. Chen, M. Q. Jiang, Y. J. Wei, and L. H. Dai, Failure criterion for metallic glasses, Philos. Mag. 91, 4536 (2011).
|
[15] |
M. Q. Jiang, Z. Ling, J. X. Meng, and L. H. Dai, Energy dissipation in fracture of bulk metallic glasses via inherent competition between local softening and quasi-cleavage, Philos. Mag. 88, 407 (2008).
|
[16] |
G. Ravichandran, and A. Molinari, Analysis of shear banding in metallic glasses under bending, Acta Mater. 53, 4087 (2005).
|
[17] |
J. Xu, U. Ramamurty, and E. Ma, The fracture toughness of bulk metallic glasses, JOM 62, 10 (2010).
|
[18] |
R. L. Narayan, P. Tandaiya, R. Narasimhan, and U. Ramamurty, Wallner lines, crack velocity and mechanisms of crack nucleation and growth in a brittle bulk metallic glass, Acta Mater. 80, 407 (2014).
|
[19] |
P. Tandaiya, U. Ramamurty, and R. Narasimhan, Mixed mode (I and II) crack tip fields in bulk metallic glasses, J. Mech. Phys. Solids 57, 1880 (2009).
|
[20] |
P. Tandaiya, R. Narasimhan, and U. Ramamurty, On the mechanism and the length scales involved in the ductile fracture of a bulk metallic glass, Acta Mater. 61, 1558 (2013).
|
[21] |
R. Narasimhan, P. Tandaiya, I. Singh, R. L. Narayan, and U. Ramamurty, Fracture in metallic glasses: Mechanics and mechanisms, Int. J. Fract. 191, 53 (2015).
|
[22] |
D. Jang, C. T. Gross, and J. R. Greer, Effects of size on the strength and deformation mechanism in Zr-based metallic glasses, Int. J. Plast. 27, 858 (2011).
|
[23] |
K. M. Flores, and R. H. Dauskardt, Mean stress effects on flow localization and failure in a bulk metallic glass, Acta Mater. 49, 2527 (2001).
|
[24] |
J. W. Rudnicki, and J. R. Rice, Conditions for the localization of deformation in pressure-sensitive dilatant materials, J. Mech. Phys. Solids 23, 371 (1975).
|
[25] |
F. Z. Li, and J. Pan, Plane-strain crack-tip fields for pressure-sensitive dilatant materials, J. Appl. Mech. 57, 40 (1990).
|
[26] |
F. Z. Li, and J. Pan, Plane-stress crack-tip fields for pressure-sensitive dilatant materials, Eng. Fract. Mech. 35, 1105 (1990).
|
[27] |
H. Guo, P. F. Yan, Y. B. Wang, J. Tan, Z. F. Zhang, M. L. Sui, and E. Ma, Tensile ductility and necking of metallic glass, Nat. Mater. 6, 735 17704779(2007).
|
[28] |
L. H. Dai, M. Yan, L. F. Liu, and Y. L. Bai, Adiabatic shear banding instability in bulk metallic glasses, Appl. Phys. Lett. 87, 141916 (2005).
|
[29] |
Y. Chen, M. Q. Jiang, and L. H. Dai, Collective evolution dynamics of multiple shear bands in bulk metallic glasses, Int. J. Plast. 50, 18 (2013).
|
[30] |
W. Jiang, G. Fan, F. Liu, G. Wang, H. Choo, and P. Liaw, Spatiotemporally inhomogeneous plastic flow of a bulk-metallic glass, Int. J. Plast. 24, 1 (2008).
|
[31] |
K. W. Chen, and J. F. Lin, Investigation of the relationship between primary and secondary shear bands induced by indentation in bulk metallic glasses, Int. J. Plast. 26, 1645 (2010).
|
[32] |
I. Singh, T. F. Guo, P. Murali, R. Narasimhan, Y. W. Zhang, and H. J. Gao, Cavitation in materials with distributed weak zones: Implications on the origin of brittle fracture in metallic glasses, J. Mech. Phys. Solids 61, 1047 (2013).
|
[33] |
P. Murali, T. F. Guo, Y. W. Zhang, R. Narasimhan, Y. Li, and H. J. Gao, Atomic scale fluctuations govern brittle fracture and cavitation behavior in metallic glasses, Phys. Rev. Lett. 107, 215501 22181893(2011).
|
[34] |
I. Singh, T. F. Guo, R. Narasimhan, and Y. W. Zhang, Cavitation in brittle metallic glasses—Effects of stress state and distributed weak zones, Int. J. Solids Struct. 51, 4373 (2014).
|
[35] |
B. A. Sun, and W. H. Wang, The fracture of bulk metallic glasses, Prog. Mater. Sci. 74, 211 (2015).
|
[36] |
X. Huang, Z. Ling, and L. H. Dai, Ductile-to-brittle transition in spallation of metallic glasses, J. Appl. Phys. 116, 143503 (2014).
|
[37] |
M. Q. Jiang, and L. H. Dai, On the origin of shear banding instability in metallic glasses, J. Mech. Phys. Solids 57, 1267 (2009).
|
[38] |
D. Klaumünzer, R. Maaß, and J. F. Löffler, Stick-slip dynamics and recent insights into shear banding in metallic glasses, J. Mater. Res. 26, 1453 (2011).
|
[39] |
R. Maaß, D. Klaumünzer, and J. F. Löffler, Propagation dynamics of individual shear bands during inhomogeneous flow in a Zr-based bulk metallic glass, Acta Mater. 59, 3205 (2011).
|
[40] |
S. X. Song, H. Bei, J. Wadsworth, and T. G. Nieh, Flow serration in a Zr-based bulk metallic glass in compression at low strain rates, Intermetallics 16, 813 (2008).
|
[41] |
S. X. Song, and T. G. Nieh, Flow serration and shear-band viscosity during inhomogeneous deformation of a Zr-based bulk metallic glass, Intermetallics 17, 762 (2009).
|
[42] |
Y. Q. Cheng, Z. Han, Y. Li, and E. Ma, Cold versus hot shear banding in bulk metallic glass, Phys. Rev. B 80, 134115 (2009).
|
[43] |
Z. Han, W. F. Wu, Y. Li, Y. J. Wei, and H. J. Gao, An instability index of shear band for plasticity in metallic glasses, Acta Mater. 57, 1367 (2009).
|
[44] |
L. F. Liu, L. H. Dai, Y. L. Bai, and B. C. Wei, Initiation and propagation of shear bands in Zr-based bulk metallic glass under quasi-static and dynamic shear loadings, J. Non-Crystal. Solids 351, 3259 (2005).
|
[45] |
M. Q. Jiang, and L. H. Dai, Shear-band toughness of bulk metallic glasses, Acta Mater. 59, 4525 (2011).
|
[46] |
Y. Chen, and L. H. Dai, Nature of crack-tip plastic zone in metallic glasses, Int. J. Plast. 77, 54 (2016).
|
[47] |
K. M. Flores, and R. H. Dauskardt, Mode II fracture behavior of a Zr-based bulk metallic glass, J. Mech. Phys. Solids 54, 2418 (2006).
|
[48] |
P. Tandaiya, R. Narasimhan, and U. Ramamurty, Mode I crack tip fields in amorphous materials with application to metallic glasses, Acta Mater. 55, 6541 (2007).
|
[49] |
P. Tandaiya, U. Ramamurty, G. Ravichandran, and R. Narasimhan, Effect of Poisson's ratio on crack tip fields and fracture behavior of metallic glasses, Acta Mater. 56, 6077 (2008).
|
[50] |
J. J. Lewandowski, W. H. Wang, and A. L. Greer, Intrinsic plasticity or brittleness of metallic glasses, Philos. Mag. Lett. 85, 77 (2005).
|
[51] |
J. Schroers, and W. L. Johnson, Ductile bulk metallic glass, Phys. Rev. Lett. 93, 255506 15697909(2004).
|
[52] |
Z. F. Zhang, and J. Eckert, Unified tensile fracture criterion, Phys. Rev. Lett. 94, 094301 15783967(2005).
|
[53] |
R. T. Qu, J. Eckert, and Z. F. Zhang, Tensile fracture criterion of metallic glass, J. Appl. Phys. 109, 083544 (2011).
|
[54] |
R. T. Qu, and Z. F. Zhang, A universal fracture criterion for high-strength materials, Sci. Rep. 3, 1117 (2013).
|
[55] |
J. Xu, and E. Ma, Damage-tolerant Zr-Cu-Al-based bulk metallic glasses with record-breaking fracture toughness, J. Mater. Res. 29, 1489 (2014).
|
[56] |
M. D. Demetriou, M. E. Launey, G. Garrett, J. P. Schramm, D. C. Hofmann, W. L. Johnson, and R. O. Ritchie, A damage-tolerant glass, Nat. Mater. 10, 123 21217693(2011).
|
[57] |
Y. H. Liu, G. Wang, R. J. Wang, D. Q. Zhao, M. X. Pan, and W. H. Wang, Super plastic bulk metallic glasses at room temperature, Science 315, 1385 17347434(2007).
|
[58] |
J. Pan, Y. P. Ivanov, W. H. Zhou, Y. Li, and A. L. Greer, Strain-hardening and suppression of shear-banding in rejuvenated bulk metallic glass, Nature 578, 559 32103194(2020).
|
[59] |
Y. Liu, T. H. Zhang, B. C. Wei, D. M. Xing, W. H. Li, and L. C. Zhang, Effect of structural relaxation on deformation behaviour of Zr-based metallic glass, Chin. Phys. Lett. 23, 1868 (2006).
|
[60] |
J. Das, K. B. Kim, W. Xu, B. C. Wei, Z. F. Zhang, W. H. Wang, S. Yi, and J. Eckert, Ductile metallic glasses in supercooled martensitic alloys, Mater. Trans. 47, 2606 (2006).
|
[61] |
T. Wang, J. Si, Y. Wu, K. Lv, Y. Liu, and X. Hui, Two-step work-hardening and its gigantic toughening effect in Zr-based bulk metallic glasses, Script. Mater. 150, 106 (2018).
|
[62] |
L. F. Liu, L. H. Dai, Y. L. Bai, B. C. Wei, and J. Eckert, Behavior of multiple shear bands in Zr-based bulk metallic glass, Mater. Chem. Phys. 93, 174 (2005).
|
[63] |
Z. F. Zhang, H. Zhang, X. F. Pan, J. Das, and J. Eckert, Effect of aspect ratio on the compressive deformation and fracture behaviour of Zr-based bulk metallic glass, Philos. Mag. Lett. 85, 513 (2005).
|
[64] |
C. A. Schuh, and A. C. Lund, Atomistic basis for the plastic yield criterion of metallic glass, Nat. Mater. 2, 449 12792648(2003).
|
[65] |
C. H. Hsueh, H. Bei, C. T. Liu, P. F. Becher, and E. P. George, Shear fracture of bulk metallic glasses with controlled applied normal stresses, Script. Mater. 59, 111 (2008).
|
[66] |
V. Keryvin, Indentation as a probe for pressure sensitivity of metallic glasses, J. Phys.-Condens. Matter 20, 114119 21694212(2008).
|
[67] |
G. C. Rauch, and W. C. Leslie, The extent and nature of the strength-differential effect in steels, Metall. Trans. 3, 377 (1972).
|
[68] |
H. Altenbach, G. B. Stoychev, and K. N. Tushtev, On elastoplastic deformation of grey cast iron, Int. J. Plast. 17, 719 (2001).
|
[69] |
|
[70] |
D. C. Drucker, Plasticity theory strength-differential (SD) phenomenon, and volume expansion in metals and plastics, Metall. Trans. 4, 667 (1973).
|
[71] |
L. A. Davis, and S. Kavesh, Deformation and fracture of an amorphous metallic alloy at high pressure, J Mater Sci 10, 453 (1975).
|
[72] |
|
[73] |
P. E. Donovan, A yield criterion for Pd404020, Acta Metall. 37, 445 (1989).
|
[74] |
T. Mukai, T. G. Nieh, Y. Kawamura, A. Inoue, and K. Higashi, Effect of strain rate on compressive behavior of a Pd404020, Intermetallics 10, 1071 (2002).
|
[75] |
T. Mukai, T. G. Nieh, Y. Kawamura, A. Inoue, and K. Higashi, Dynamic response of a Pd404020, Script. Mater. 46, 43 (2002).
|
[76] |
J. J. Lewandowski, and P. Lowhaphandu, Effects of hydrostatic pressure on the flow and fracture of a bulk amorphous metal, Philos. Mag. A 82, 3427 (2002).
|
[77] |
A. V. Sergueeva, N. A. Mara, J. D. Kuntz, E. J. Lavernia, and A. K. Mukherjee, Shear band formation and ductility in bulk metallic glass, Philos. Mag. 85, 2671 (2005).
|
[78] |
H. A. Bruck, T. Christman, A. J. Rosakis, and W. L. Johnson, Quasi-static constitutive behavior of Zr41.2513.751012.522.5, Script. Metall. Mater. 30, 429 (1994).
|
[79] |
C. T. Liu, L. Heatherly, J. A. Horton, D. S. Easton, C. A. Carmichael, J. L. Wright, J. H. Schneibel, M. H. Yoo, C. H. Chen, and A. Inoue, Test environments and mechanical properties of Zr-base bulk amorphous alloys, Metall. Mat. Trans. A 29, 1811 (1998).
|
[80] |
G. He, J. Lu, Z. Bian, D. Chen, and G. Chen, G. Tu, and G. Chen, Fracture morphology and quenched-in precipitates induced embrittlement in a Zr-base bulk glass, Mater. Trans. 42, 356 (2001).
|
[81] |
Z. F. Zhang, J. Eckert, and L. Schultz, Fatigue and fracture behavior of bulk metallic glass, Metall. Mat. Trans. A 35, 3489 (2004).
|
[82] |
T. Yoshikawa, M. Tokuda, and T. Inaba, Influence of thermoplastic deformation on mechanical properties of Zr-based bulk metallic glasses at room temperature, Int. J. Mech. Sci. 50, 888 (2008).
|
[83] |
V. Keryvin, M. L. Vaillant, T. Rouxel, M. Huger, T. Gloriant, and Y. Kawamura, Thermal stability and crystallisation of a Zr5530105in situ, Intermetallics 10, 1289 (2002).
|
[84] |
T. Hirano, H. Kato, A. Matsuo, Y. Kawamura, and A. Inoue, Synthesis and mechanical properties of Zr5510530in-situ, Mater. Trans. JIM 41, 1454 (2000).
|
[85] |
F. Szuecs, C. P. Kim, and W. L. Johnson, Mechanical properties of Zr56.213.85.06.95.612.5, Acta Mater. 49, 1507 (2001).
|
[86] |
R. D. Conner, Y. Li, W. D. Nix, and W. L. Johnson, Shear band spacing under bending of Zr-based metallic glass plates, Acta Mater. 52, 2429 (2004).
|
[87] |
Z. F. Zhang, J. Eckert, and L. Schultz, Difference in compressive and tensile fracture mechanisms of Zr59201083, Acta Mater. 51, 1167 (2003).
|
[88] |
A. Inoue, Stabilization of metallic supercooled liquid and bulk amorphous alloys, Acta Mater. 48, 279 (2000).
|
[89] |
A. Inoue, W. Zhang, T. Zhang, and K. Kurosaka, High-strength Cu-based bulk glassy alloys in Cu-Zr-Ti and Cu-Hf-Ti ternary systems, Acta Mater. 49, 2645 (2001).
|
[90] |
T. Masumoto, and R. Maddin, The mechanical properties of palladium 20 a/o silicon alloy quenched from the liquid state, Acta Metall. 19, 725 (1971).
|
[91] |
A. Inoue, S. Sobu, D. V. Louzguine, H. Kimura, and K. Sasamori, Ultrahigh strength al-based amorphous alloys containing Sc, J. Mater. Res. 19, 1539 (2004).
|
[92] |
M. L. Lee, Y. Li, and C. A. Schuh, Effect of a controlled volume fraction of dendritic phases on tensile and compressive ductility in La-based metallic glass matrix composites, Acta Mater. 52, 4121 (2004).
|
[93] |
Z. F. Zhang, G. He, J. Eckert, and L. Schultz, Fracture Mechanisms in bulk metallic glassy materials, Phys. Rev. Lett. 91, 045505 12906675(2003).
|
[94] |
J. Saida, and A. Inoue, Microstructure of tensile fracture in nanoicosahedral quasicrystal dispersed Zr8020, Script. Mater. 50, 1297 (2004).
|
[95] |
M. Stoica, J. Eckert, S. Roth, Z. F. Zhang, L. Schultz, and W. H. Wang, Mechanical behavior of Fe65.54441255.5, Intermetallics 13, 764 (2005).
|
[96] |
Q. He, J. K. Shang, E. Ma, and J. Xu, Crack-resistance curve of a Zr–Ti-Cu–Al bulk metallic glass with extraordinary fracture toughness, Acta Mater. 60, 4940 (2012).
|
[97] |
X. K. Xi, D. Q. Zhao, M. X. Pan, W. H. Wang, Y. Wu, and J. J. Lewandowski, Fracture of brittle metallic glasses: Brittleness or plasticity, Phys. Rev. Lett. 94, 125510 15903937(2005).
|
[98] |
G. Wang, Y. T. Wang, Y. H. Liu, M. X. Pan, D. Q. Zhao, and W. H. Wang, Evolution of nanoscale morphology on fracture surface of brittle metallic glass, Appl. Phys. Lett. 89, 121909 (2006).
|
[99] |
R. O. Ritchie, The conflicts between strength and toughness, Nat. Mater. 10, 817 22020005(2011).
|
[100] |
F. F. Wu, W. Zheng, S. D. Wu, Z. F. Zhang, and J. Shen, Shear stability of metallic glasses, Int. J. Plast. 27, 560 (2011).
|
[101] |
C. Fan, H. Li, L. J. Kecskes, K. Tao, H. Choo, P. K. Liaw, and C. T. Liu, Mechanical behavior of bulk amorphous alloys reinforced by ductile particles at cryogenic temperatures, Phys. Rev. Lett. 96, 145506 16712094(2006).
|
[102] |
J. X. Meng, Z. Ling, M. Q. Jiang, H. S. Zhang, and L. H. Dai, Dynamic fracture instability of tough bulk metallic glass, Appl. Phys. Lett. 92, 171909 (2008).
|
[103] |
J. P. Escobedo, and Y. M. Gupta, Dynamic tensile response of Zr-based bulk amorphous alloys: Fracture morphologies and mechanisms, J. Appl. Phys. 107, 123502 (2010).
|
[104] |
Z. F. Zhang, F. F. Wu, W. Gao, J. Tan, Z. G. Wang, M. Stoica, J. Das, J. Eckert, B. L. Shen, and A. Inoue, Wavy cleavage fracture of bulk metallic glass, Appl. Phys. Lett. 89, 251917 (2006).
|
[105] |
M. Q. Jiang, J. X. Meng, J. B. Gao, X. L. Wang, T. Rouxel, V. Keryvin, Z. Ling, and L. H. Dai, Fractal in fracture of bulk metallic glass, Intermetallics 18, 2468 (2010).
|
[106] |
G. Wang, D. Q. Zhao, H. Y. Bai, M. X. Pan, A. L. Xia, B. S. Han, X. K. Xi, Y. Wu, and W. H. Wang, Nanoscale periodic morphologies on the fracture surface of brittle metallic glasses, Phys. Rev. Lett. 98, 235501 17677915(2007).
|
[107] |
X. K. Xi, D. Q. Zhao, M. X. Pan, W. H. Wang, Y. Wu, and J. J. Lewandowski, Periodic corrugation on dynamic fracture surface in brittle bulk metallic glass, Appl. Phys. Lett. 89, 181911 (2006).
|
[108] |
R. Huang, Z. Suo, J. H. Prevost, and W. D. Nix, Inhomogeneous deformation in metallic glasses, J. Mech. Phys. Solids 50, 1011 (2002).
|
[109] |
G. Subhash, and H. Zhang, Shear band patterns in metallic glasses under static indentation, dynamic indentation, and scratch processes, Metall. Mat. Trans. A 38, 2936 (2007).
|
[110] |
P. S. Steif, F. Spaepen, and J. W. Hutchinson, Strain localization in amorphous metals, Acta Metall. 30, 447 (1982).
|
[111] |
B. Yang, M. L. Morrison, P. K. Liaw, R. A. Buchanan, G. Wang, C. T. Liu, and M. Denda, Dynamic evolution of nanoscale shear bands in a bulk-metallic glass, Appl. Phys. Lett. 86, 141904 (2005).
|
[112] |
|
[113] |
J. W. Cui, R. T. Qu, F. F. Wu, Z. F. Zhang, B. L. Shen, M. Stoica, and J. Eckert, Shear band evolution during large plastic deformation of brittle and ductile metallic glasses, Philos. Mag. Lett. 90, 573 (2010).
|
[114] |
U. Ramamurty, S. Jana, Y. Kawamura, and K. Chattopadhyay, Hardness and plastic deformation in a bulk metallic glass, Acta Mater. 53, 705 (2005).
|
[115] |
W. L. Johnson, and K. Samwer, A universal criterion for plastic yielding of metallic glasses with a (TTg2/3, Phys. Rev. Lett. 95, 195501 16383993(2005).
|
[116] |
L. Sun, M. Q. Jiang, and L. H. Dai, Intrinsic correlation between dilatation and pressure sensitivity of plastic flow in metallic glasses, Script. Mater. 63, 945 (2010).
|
[117] |
B. A. Sun, H. B. Yu, W. Jiao, H. Y. Bai, D. Q. Zhao, and W. H. Wang, Plasticity of ductile metallic glasses: A self-organized critical state, Phys. Rev. Lett. 105, 035501 20867777(2010).
|
[118] |
|
[119] |
P. Zhao, J. Li, and Y. Wang, Heterogeneously randomized STZ model of metallic glasses: Softening and extreme value statistics during deformation, Int. J. Plast. 40, 1 (2013).
|
[120] |
M. Chen, Mechanical behavior of metallic glasses: Microscopic understanding of strength and ductility, Annu. Rev. Mater. Res. 38, 445 (2008).
|
[121] |
W. H. Wang, The elastic properties, elastic models and elastic perspectives of metallic glasses, Prog. Mater. Sci. 57, 487 (2012).
|
[122] |
D. Pan, A. Inoue, T. Sakurai, and M. W. Chen, Experimental characterization of shear transformation zones for plastic flow of bulk metallic glasses, Proc. Natl. Acad. Sci. USA 105, 14769 18815377(2008).
|
[123] |
C. Maloney, and A. Lemaître, Subextensive scaling in the athermal, quasistatic limit of amorphous matter in plastic shear flow, Phys. Rev. Lett. 93, 016001 (2004).
|
[124] |
A. Lemaître, and C. Caroli, Rate-dependent avalanche size in athermally sheared amorphous solids, Phys. Rev. Lett. 103, 065501 19792580(2009).
|
[125] |
F. Jiang, M. Q. Jiang, H. F. Wang, Y. L. Zhao, L. He, and J. Sun, Shear transformation zone volume determining ductile-brittle transition of bulk metallic glasses, Acta Mater. 59, 2057 (2011).
|
[126] |
D. Pan, Y. Yokoyama, T. Fujita, Y. H. Liu, S. Kohara, A. Inoue, and M. W. Chen, Correlation between structural relaxation and shear transformation zone volume of a bulk metallic glass, Appl. Phys. Lett. 95, 141909 (2009).
|
[127] |
D. Şopu, A. Stukowski, M. Stoica, and S. Scudino, Atomic-level processes of shear band nucleation in metallic glasses, Phys. Rev. Lett. 119, 195503 29219492(2017).
|
[128] |
Z. L. Tian, Y. J. Wang, Y. Chen, and L. H. Dai, Strain gradient drives shear banding in metallic glasses, Phys. Rev. B 96, 094103 (2017).
|
[129] |
H. J. Leamy, T. T. Wang, and H. S. Chen, Plastic flow and fracture of metallic glass, Metall. Trans. 3, 699 (1972).
|
[130] |
W. J. Wright, R. B. Schwarz, and W. D. Nix, Localized heating during serrated plastic flow in bulk metallic glasses, Mater. Sci. Eng.-A 319-321, 229 (2001).
|
[131] |
C. A. Pampillo, and H. S. Chen, Comprehensive plastic deformation of a bulk metallic glass, Mater. Sci. Eng. 13, 181 (1974).
|
[132] |
L. H. Dai, and Y. L. Bai, Basic mechanical behaviors and mechanics of shear banding in BMGs, Int. J. Impact Eng. 35, 704 (2008).
|
[133] |
Q. Yang, A. Mota, and M. Ortiz, A finite-deformation constitutive model of bulk metallic glass plasticity, Comput. Mech. 37, 194 (2006).
|
[134] |
P. Thamburaja, and R. Ekambaram, Coupled thermo-mechanical modelling of bulk-metallic glasses: Theory, finite-element simulations and experimental verification, J. Mech. Phys. Solids 55, 1236 (2007).
|
[135] |
D. D. E. Brennhaugen, K. Georgarakis, Y. Yokoyama, K. S. Nakayama, L. Arnberg, and R. E. Aune, Probing heat generation during tensile plastic deformation of a bulk metallic glass at cryogenic temperature, Sci. Rep. 8, 16317 30397243(2018).
|
[136] |
J. Fornell, A. Concustell, S. Suriñach, W. H. Li, N. Cuadrado, A. Gebert, M. D. Baró, and J. Sort, Yielding and intrinsic plasticity of Ti-Zr-Ni-Cu-Be bulk metallic glass, Int. J. Plast. 25, 1540 (2009).
|
[137] |
R. T. Ott, F. Sansoz, T. Jiao, D. Warner, J. F. Molinari, K. T. Ramesh, T. C. Hufnagel, and C. Fan, Yield criteria and strain-rate behavior of Zr57.416.48.2810, Metall. Mat. Trans. A 37, 3251 (2006).
|
[138] |
Y. F. Gao, L. Wang, H. Bei, and T. G. Nieh, On the shear-band direction in metallic glasses, Acta Mater. 59, 4159 (2011).
|
[139] |
H. H. Ruan, L. C. Zhang, and J. Lu, A new constitutive model for shear banding instability in metallic glass, Int. J. Solids Struct. 48, 3112 (2011).
|
[140] |
Y. Chen, and L. Dai, Onset and direction of shear banding instability in metallic glasses, J. Mater. Sci. Tech. 30, 616 (2014).
|
[141] |
H. Neuhäuser, Rate of shear band formation in metallic glasses, Script. Metall. 12, 471 (1978).
|
[142] |
W. J. Wright, M. W. Samale, T. C. Hufnagel, M. M. LeBlanc, and J. N. Florando, Studies of shear band velocity using spatially and temporally resolved measurements of strain during quasistatic compression of a bulk metallic glass, Acta Mater. 57, 4639 (2009).
|
[143] |
A. Vinogradov, On shear band velocity and the detectability of acoustic emission in metallic glasses, Script. Mater. 63, 89 (2010).
|
[144] |
S. Y. Jiang, M. Q. Jiang, L. H. Dai, and Y. G. Yao, Atomistic origin of rate-dependent serrated plastic flow in metallic glasses, Nanoscale Res. Lett. 3, 524 20596444(2008).
|
[145] |
R. D. Conner, W. L. Johnson, N. E. Paton, and W. D. Nix, Shear bands and cracking of metallic glass plates in bending, J. Appl. Phys. 94, 904 (2003).
|
[146] |
D. B. Miracle, A. Concustell, Y. Zhang, A. R. Yavari, and A. L. Greer, Shear bands in metallic glasses: Size effects on thermal profiles, Acta Mater. 59, 2831 (2011).
|
[147] |
H. Zhang, S. Maiti, and G. Subhash, Evolution of shear bands in bulk metallic glasses under dynamic loading, J. Mech. Phys. Solids 56, 2171 (2008).
|
[148] |
D. C. Hofmann, J. Y. Suh, A. Wiest, G. Duan, M. L. Lind, M. D. Demetriou, and W. L. Johnson, Designing metallic glass matrix composites with high toughness and tensile ductility, Nature 451, 1085 18305540(2008).
|
[149] |
J. Das, M. B. Tang, K. B. Kim, R. Theissmann, F. Baier, W. H. Wang, and J. Eckert, “Work-Hardenable” ductile bulk metallic glass, Phys. Rev. Lett. 94, 205501 16090260(2005).
|
[150] |
K. F. Yao, F. Ruan, Y. Q. Yang, and N. Chen, Superductile bulk metallic glass, Appl. Phys. Lett. 88, 122106 (2006).
|
[151] |
L. Y. Chen, Z. D. Fu, G. Q. Zhang, X. P. Hao, Q. K. Jiang, X. D. Wang, Q. P. Cao, H. Franz, Y. G. Liu, H. S. Xie, S. L. Zhang, B. Y. Wang, Y. W. Zeng, and J. Z. Jiang, New class of plastic bulk metallic glass, Phys. Rev. Lett. 100, 075501 18352567(2008).
|
[152] |
C. C. Hays, C. P. Kim, and W. L. Johnson, Microstructure controlled shear band pattern formation and enhanced plasticity of bulk metallic glasses containing in situ, Phys. Rev. Lett. 84, 2901 11018971(2000).
|
[153] |
Y. Chen, M. Q. Jiang, and L. H. Dai, How does the initial free volume distribution affect shear band formation in metallic glass?, Sci. China-Phys. Mech. Astron. 54, 1488 (2011).
|
[154] |
X. Hui, S. N. Liu, S. J. Pang, L. C. Zhuo, T. Zhang, G. L. Chen, and Z. K. Liu, High-zirconium-based bulk metallic glasses with large plasticity, Script. Mater. 63, 239 (2010).
|
[155] |
S. Xie, and E. P. George, Hardness and shear band evolution in bulk metallic glasses after plastic deformation and annealing, Acta Mater. 56, 5202 (2008).
|
[156] |
H. Zhang, X. Jing, G. Subhash, L. J. Kecskes, and R. J. Dowding, Investigation of shear band evolution in amorphous alloys beneath a Vickers indentation, Acta Mater. 53, 3849 (2005).
|
[157] |
A. Bharathula, S. W. Lee, W. J. Wright, and K. M. Flores, Compression testing of metallic glass at small length scales: Effects on deformation mode and stability, Acta Mater. 58, 5789 (2010).
|
[158] |
D. E. Grady, and M. E. Kipp, The growth of unstable thermoplastic shear with application to steady-wave shock compression in solids, J. Mech. Phys. Solids 35, 95 (1987).
|
[159] |
D. E. Grady, Properties of an adiabatic shear-band process zone, J. Mech. Phys. Solids 40, 1197 (1992).
|
[160] |
D. E. Grady, Adiabatic shear failure in brittle solids, Int. J. Impact Eng. 38, 661 (2011).
|
[161] |
T. W. Wright, and H. Ockendon, A scaling law for the effect of inertia on the formation of adiabatic shear bands, Int. J. Plast. 12, 927 (1996).
|
[162] |
Y. Wei, X. Lei, L. S. Huo, W. H. Wang, and A. L. Greer, Towards more uniform deformation in metallic glasses: The role of Poisson's ratio, Mater. Sci. Eng.-A 560, 510 (2013).
|
[163] |
B. G. Yoo, J. Y. Kim, Y. J. Kim, I. C. Choi, S. Shim, T. Y. Tsui, H. Bei, U. Ramamurty, and J. Jang, Increased time-dependent room temperature plasticity in metallic glass nanopillars and its size-dependency, Int. J. Plast. 37, 108 (2012).
|
[164] |
C. A. Volkert, A. Donohue, and F. Spaepen, Effect of sample size on deformation in amorphous metals, J. Appl. Phys. 103, 083539 (2008).
|
[165] |
J. R. Greer, and J. T. M. De Hosson, Plasticity in small-sized metallic systems: Intrinsic versus extrinsic size effect, Prog. Mater. Sci. 56, 654 (2011).
|
[166] |
G. Kumar, A. Desai, and J. Schroers, Bulk metallic glass: The smaller the better, Adv. Mater. 23, 461 20922805(2011).
|
[167] |
D. Jang, and J. R. Greer, Transition from a strong-yet-brittle to a stronger-and-ductile state by size reduction of metallic glasses, Nat. Mater. 9, 215 20139966(2010).
|
[168] |
X. Zhou, H. Zhou, X. Li, and C. Chen, Size effects on tensile and compressive strengths in metallic glass nanowires, J. Mech. Phys. Solids 84, 130 (2015).
|
[169] |
E. Bouchaud, D. Boivin, J. L. Pouchou, D. Bonamy, B. Poon, and G. Ravichandran, Fracture through cavitation in a metallic glass, Europhys. Lett. 83, 66006 (2008).
|
[170] |
R. F. Bishop, R. Hill, and N. F. Mott, The theory of indentation and hardness tests, Proc. Phys. Soc. 57, 147 (1945).
|
[171] |
P. Chadwick, The quasi-static expansion of a spherical cavity in metals and ideal soils, Q J Mech. Appl. Math. 12, 52 (1959).
|
[172] |
D. Durban, and M. Baruch, On the problem of a spherical cavity in an infinite elasto-plastic medium, J. Appl. Mech. 43, 633 (1976).
|
[173] |
Y. Huang, J. W. Hutchinson, and V. Tvergaard, Cavitation instabilities in elastic-plastic solids, J. Mech. Phys. Solids 39, 223 (1991).
|
[174] |
P. Murali, R. Narasimhan, T. F. Guo, Y. W. Zhang, and H. J. Gao, Shear bands mediate cavitation in brittle metallic glasses, Script. Mater. 68, 567 (2013).
|
[175] |
P. Guan, S. Lu, M. J. B. Spector, P. K. Valavala, and M. L. Falk, Cavitation in amorphous solids, Phys. Rev. Lett. 110, 185502 23683215(2013).
|
[176] |
X. Huang, Z. Ling, Y. J. Wang, and L. H. Dai, Intrinsic structural defects on medium range in metallic glasses, Intermetallics 75, 36 (2016).
|
[177] |
L. Q. Shen, J. H. Yu, X. C. Tang, B. A. Sun, Y. H. Liu, H. Y. Bai, and W. H. Wang, Observation of cavitation governing fracture in glasses, Sci. Adv. 7, eabf7293 33789905(2021).
|
[178] |
X. Huang, Z. Ling, H. S. Zhang, J. Ma, and L. H. Dai, How does spallation microdamage nucleate in bulk amorphous alloys under shock loading?, J. Appl. Phys. 110, 103519 (2011).
|
[179] |
X. Huang, Z. Ling, and L. H. Dai, Cavitation instabilities in bulk metallic glasses, Int. J. Solids Struct. 50, 1364 (2013).
|
[180] |
X. Huang, Z. Ling, and L. H. Dai, Influence of surface energy and thermal effects on cavitation instabilities in metallic glasses, Mech. Mater. 131, 113 (2019).
|
[181] |
J. R. Rice, A path independent integral and the approximate analysis of strain concentration by notches and cracks, J. Appl. Mech. 35, 379 (1968).
|
[182] |
J. W. Hutchinson, Plastic stress and strain fields at a crack tip, J. Mech. Phys. Solids 16, 337 (1968).
|
[183] |
J. R. Rice, and G. F. Rosengren, Plane strain deformation near a crack tip in a power-law hardening material, J. Mech. Phys. Solids 16, 1 (1968).
|
[184] |
J. Pan, and C. F. Shih, Plane-stress crack-tip fields for power-law hardening orthotropic materials, Int. J. Fract. 37, 171 (1988).
|
[185] |
J. Pan, and C. F. Shih, Plane-strain crack-tip fields for power-law hardening orthotropic materials, Mech. Mater. 5, 299 (1986).
|
[186] |
J. W. Hutchinson, Constitutive behavior and crack tip fields for materials undergoing creep-constrained grain boundary cavitation, Acta Metall. 31, 1079 (1983).
|
[187] |
H. Gao, and J. R. Rice, Shear stress intensity factors for a planar crack with slightly curved front, J. Appl. Mech. 53, 774 (1986).
|
[188] |
N. R. F. Elfakhakhre, N. M. A. Nik Long, and Z. K. Eshkuvatov, Numerical solutions for cracks in an elastic half-plane, Acta Mech. Sin. 35, 212 (2018).
|
[189] |
X. Ji, and F. Zhu, Finite element simulation of elastoplastic field near crack tips and results for a central cracked plate of LE-LHP material under tension, Acta Mech. Sin. 35, 828 (2019).
|
[190] |
Z. E. Liu, and Y. Wei, An analytical solution to the stress fields of kinked cracks, J. Mech. Phys. Solids 156, 104619 (2021).
|
[191] |
H. Y. Jeong, X. W. Li, A. F. Yee, and J. Pan, Slip lines in front of a round notch tip in a pressure-sensitive material, Mech. Mater. 19, 29 (1994).
|
[192] |
S. Basu, and E. V. Giessen, A thermo-mechanical study of mode I, small-scale yielding crack-tip fields in glassy polymers, Int. J. Plast. 18, 1395 (2002).
|
[193] |
H. Y. Subramanya, S. Viswanath, and R. Narasimhan, A three-dimensional numerical study of mode I crack tip fields in pressure sensitive plastic solids, Int. J. Solids Struct. 44, 1863 (2007).
|
[194] |
P. Lowhaphandu, and J. J. Lewandowski, Fracture toughness and notched toughness of bulk amorphous alloy: Zr-Ti-Ni-Cu-Be, Script. Mater. 38, 1811 (1998).
|
[195] |
L. Anand, and C. Su, A theory for amorphous viscoplastic materials undergoing finite deformations, with application to metallic glasses, J. Mech. Phys. Solids 53, 1362 (2005).
|
[196] |
D. L. Henann, and L. Anand, Fracture of metallic glasses at notches: Effects of notch-root radius and the ratio of the elastic shear modulus to the bulk modulus on toughness, Acta Mater. 57, 6057 (2009).
|
[197] |
C. H. Rycroft, and E. Bouchbinder, Fracture toughness of metallic glasses: Annealing-induced embrittlement, Phys. Rev. Lett. 109, 194301 23215386(2012).
|
[198] |
B. Ding, X. Li, X. Zhang, H. Wu, Z. Xu, and H. Gao, Brittle versus ductile fracture mechanism transition in amorphous lithiated silicon: From intrinsic nanoscale cavitation to shear banding, Nano Energy 18, 89 (2015).
|
[199] |
J. R. Rice, and R. Thomson, Ductile versus brittle behaviour of crystals, Philos. Mag.-J. Theor. Exp. Appl. Phys. 29, 73 (1974).
|
[200] |
A. Kelly, W. R. Tyson, and A. H. Cottrell, Ductile and brittle crystals, Philos. Mag.-J. Theor. Exp. Appl. Phys. 15, 567 (1967).
|
[201] |
H. Gao, B. Ji, I. L. Jager, E. Arzt, and P. Fratzl, Materials become insensitive to flaws at nanoscale: Lessons from nature, Proc. Natl. Acad. Sci. USA 100, 5597 12732735(2003).
|
[202] |
S. J. Poon, A. Zhu, and G. J. Shiflet, Poisson’s ratio and intrinsic plasticity of metallic glasses, Appl. Phys. Lett. 92, 261902 (2008).
|
[203] |
A. C. Lund, and C. A. Schuh, Yield surface of a simulated metallic glass, Acta Mater. 51, 5399 (2003).
|
[204] |
A. C. Lund, and C. A. Schuh, The Mohr-Coulomb criterion from unit shear processes in metallic glass, Intermetallics 12, 1159 (2004).
|
[205] |
X. Lei, Y. Wei, B. Wei, and W. H. Wang, Spiral fracture in metallic glasses and its correlation with failure criterion, Acta Mater. 99, 206 (2015).
|
[206] |
R. T. Qu, Z. J. Zhang, P. Zhang, Z. Q. Liu, and Z. F. Zhang, Generalized energy failure criterion, Sci. Rep. 6, 23359 26996781(2016).
|
[207] |
Z. Q. Song, E. Ma, and J. Xu, Failure of Zr6122512, Intermetallics 86, 25 (2017).
|
[208] |
B. Ding, and X. Li, An eccentric ellipse failure criterion for amorphous materials, J. Appl. Mech. 84, 081005 (2017).
|