Citation: | MENG Long, HE Yan-ping, ZHAO Yong-sheng, YANG Jie, YANG He, HAN Zhao-long, YU Long, MAO Wen-gang, DU Wei-kang. Dynamic Response of 6MW Spar Type Floating Offshore Wind Turbine by Experiment and Numerical Analyses[J]. JOURNAL OF MECHANICAL ENGINEERING, 2020, 34(5): 608-620. doi: 10.1007/s13344-020-0055-z |
[1] |
Cai, J.F. and Zhang, Y., 2012. Differences of Kaimal and von Karman turbulence spectrum model in wind turbine load calculation, Wind Energy, (3), 80–84. (in Chinese)
|
[2] |
Cermelli, C., Roddier, D. and Aubault, A., 2009. WindFloat: a floating foundation for offshore wind turbines-Part II: Hydrodynamics analysis, Proceedings of ASME 2009 28th International Conference on Ocean, Offshore and Arctic Engineering, Honolulu, Hawaii, USA.
|
[3] |
Chaviaropoulos, P.K. and Hansen, M.O.L., 2000. Investigating three-dimensional and rotational effects on wind turbine blades by means of a quasi-3D Navier-Stokes solver, Journal of Fluids Engineering, 122(2), 330–336. doi: 10.1115/1.483261
|
[4] |
Contestabile, P., Ferrante, V. and Vicinanza, D., 2015. Wave energy resource along the coast of Santa Catarina (Brazil), Energies, 8(12), 14219–14243. doi: 10.3390/en81212423
|
[5] |
De Ridder, E.J., Otto, W., Zondervan, G.J., Huijs, F. and Vaz, G., 2014. Development of a scaled-down floating wind turbine for offshore basin testing, Proceedings of ASME 2014 33rd International Conference on Ocean, Offshore and Arctic Engineering, San Francisco, California, USA.
|
[6] |
Det Norske Veritas (DNV), 2016. Support Structures for Wind Turbines, DNVGL-ST-0126, Standard Offshore, Det Norske Veritas, Oslo, Norway.
|
[7] |
Duan, F., Hu, Z.Q. and Niedzwecki, J.M., 2016. Model test investigation of a spar floating wind turbine, Marine Structures, 49, 76–96. doi: 10.1016/j.marstruc.2016.05.011
|
[8] |
Global Wind Statistics 2016, GWEC. http://www.gwec.net/.
|
[9] |
Hua, X., Gu, R., Jin, J.F., Liu, Y.R., Ma, Y., Cong, Q. and Zhang, Y., 2010. Numerical simulation and aerodynamic performance comparison between seagull aerofoil and NACA 4412 aerofoil under low-Reynolds, Advances in Natural Science, 3(2), 244–250.
|
[10] |
Iuppa, C., Cavallaro, L., Foti, E. and Vicinanza, D., 2015. Potential wave energy production by different wave energy converters around Sicily, Journal of Renewable and Sustainable Energy, 7(6), 061701. doi: 10.1063/1.4936397
|
[11] |
Jain, A., Goupee, A.J., Robertson, A.N., Kimball, R.W., Jonkman, J.M. and Swift, A.H.P., 2012. FAST code verification of scaling laws for DeepCwind floating wind system, Proceedings of 22nd International Offshore and Polar Engineering Conference, Rhodes, Greece.
|
[12] |
Jeon, M., Lee, S. and Lee, S., 2014. Unsteady aerodynamics of offshore floating wind turbines in platform pitching motion using vortex lattice method, Renewable Energy, 65, 207–212. doi: 10.1016/j.renene.2013.09.009
|
[13] |
Jonkman, J.M., 2007. Dynamics Modeling and Loads Analysis of an Offshore Floating Wind Turbine, National Renewable Energy Laboratory, USA.
|
[14] |
Jonkman, J., 2010. Definition of the Floating System for Phase IV of OC3, National Renewable Energy Laboratory, USA.
|
[15] |
Jonkman, J.M. and Kilcher, L., 2012. TurbSim User's Guide, Version 1.06.00, National Renewable Energy Laboratory, USA.
|
[16] |
Karimirad, M., 2011. Stochastic Dynamic Response Analysis of Spar-Type Wind Turbines with Catenary or Taut Mooring Systems, Ph.D. Thesis, Norwegian University of Science and Technology, Trondheim.
|
[17] |
Karimirad, M. and Moan, T., 2012a. A simplified method for coupled analysis of floating offshore wind turbines, Marine Structures, 27(1), 45–63. doi: 10.1016/j.marstruc.2012.03.003
|
[18] |
Karimirad, M. and Moan, T., 2012b. Wave- and wind-induced dynamic response of a Spar-type offshore wind turbine, Journal of Waterway,Port,Coastal,and Ocean Engineering, 138(1), 9–20. doi: 10.1061/(ASCE)WW.1943-5460.0000087
|
[19] |
Kvittema, M.I., Bachynski, E.E. and Moan, T., 2012. Effects of hydrodynamic modelling in fully coupled simulations of a semi-submersible wind turbine, Energy Procedia, 24, 351–362. doi: 10.1016/j.egypro.2012.06.118
|
[20] |
Marino, E., Giusti, A. and Manuel, L., 2017. Offshore wind turbine fatigue loads: The influence of alternative wave modeling for different turbulent and mean winds, Renewable Energy, 102, 157–169. doi: 10.1016/j.renene.2016.10.023
|
[21] |
Martin, H.R., 2011. Development of a Scale Model Wind Turbine for Testing of Offshore Floating Wind Turbine Systems, MSc. Thesis, The University of Maine, Orono, ME.
|
[22] |
Matha, D., 2010. Model Development and Loads Analysis of an Offshore Wind Turbine on a Tension Leg Platform with a Comparison to Other Floating Turbine Concepts, National Renewable Energy Laboratory, USA.
|
[23] |
Meng, L., He, Y.P., Liu, Y.D., Zhao, Y.S., Tong, J. and Yu, L., 2018. Numerical study on influence of turbulent and steady winds on coupled dynamic response of 6-MW Spar-type FOWT, Proceedings of the 28th International Ocean and Polar Engineering Conference, Sapporo, Japan.
|
[24] |
Meng, L., He, Y.P., Zhao, Y.S., Peng, T. and Kou Y.F., 2017b. Research and practice of offshore wind turbine model test platform and technology, Scientia Sinica Physica,Mechanica and Astronomica, 47(10), 104701. doi: 10.1360/SSPMA2017-00067
|
[25] |
Meng, L., He, Y.P., Zhao, Y.S., Peng, T. and Yang, J., 2019. Experimental study on aerodynamic characteristics of the model wind rotor system and on characterization of a wind generation system, China Ocean Engineering, 33(2), 137–147. doi: 10.1007/s13344-019-0014-8
|
[26] |
Meng, L., Zhou, T., He, Y.P., Zhao, Y.S. and Liu, Y.D., 2017a. Concept design and coupled dynamic response analysis on 6-MW Spar-type floating offshore wind turbine, China Ocean Engineering, 31(5), 567–577. doi: 10.1007/s13344-017-0065-7
|
[27] |
Moriarty, P.J., Holley, W.E. and Butterfield, S., 2002. Effect of turbulence variation on extreme loads prediction for wind turbines, Journal of Solar Energy Engineering, 124(4), 387–395. doi: 10.1115/1.1510137
|
[28] |
Namik, H. and Stol, K., 2010. Individual blade pitch control of floating offshore wind turbines, Wind Energy, 13(1), 74–85. doi: 10.1002/we.332
|
[29] |
Nejad, A.R., Bachynski, E.E., Kvittem, M.I., Luan, C.Y., Gao, Z. and Moan, T., 2015. Stochastic dynamic load effect and fatigue damage analysis of drivetrains in land-based and TLP. Spar and semi-submersible floating wind turbines, Marine Structures, 42, 137–153. doi: 10.1016/j.marstruc.2015.03.006
|
[30] |
Nielsen, F.G., Hanson, T.D. and Skaare, B., 2006. Integrated dynamic analysis of floating offshore wind turbines, Proceedings of the 25th International Conference on Offshore Mechanics and Arctic Engineering, Hamburg, Germany.
|
[31] |
Quallen, S., Xing, T., Carrica, P., Li, Y.W. and Xu, J., 2013. CFD simulation of a floating offshore wind turbine system using a quasi-static crowfoot mooring-line model, Proceedings of the 23rd International Offshore and Polar Engineering Conference, Anchorage, Alaska.
|
[32] |
Sahu, B.K., 2018. Wind energy developments and policies in China: A short review, Renewable and Sustainable Energy Reviews, 81, 1393–1405. doi: 10.1016/j.rser.2017.05.183
|
[33] |
Salehyar, S. and Zhu, Q., 2015. Aerodynamic dissipation effects on the rotating blades of floating wind turbines, Renewable Energy, 78, 119–127. doi: 10.1016/j.renene.2015.01.013
|
[34] |
Skaare, B., 2017. Development of the Hywind concept, Proceedings of ASME 36th International Conference on Ocean, Offshore and Arctic Engineering, Trondheim, Norway.
|
[35] |
Skaare, B., Hanson, T.D., Nielsen, F.G., Yttervik, R., Hansen, A.M., Thomsen, K. and Larsen, T.J., 2007. Integrated dynamic analysis of floating offshore wind turbines, Proceedings of the European Wind Energy Conference and Exhibition (EWEC), Milan, Italy.
|
[36] |
Soukissian, T., Karathanasi, F. and Axaopoulos, P., 2017. Satellite-based offshore wind resource assessment in the mediterranean sea, IEEE Journal of Oceanic Engineering, 42(1), 73–86. doi: 10.1109/JOE.2016.2565018
|
[37] |
Stewart, G.M., Lackner, M.A., Robertson, A., Jonkman, J. and Goupee, A.J., 2012. Calibration and validation of a FAST floating wind turbine model of the deepCwind scaled tension-leg platform, Proceedings of the 22nd International Offshore and Polar Engineering Conference, Rhodes, Greece.
|
[38] |
Tomasicchio, G.R., Avossa, A.M., Riefolo, L., Ricciardelli, F., Musci, E., D’Alessandro, F. and Vicinanza, D., 2017. Dynamic modelling of a Spar buoy wind turbine, Proceedings of the 36th International Conference on Ocean, Offshore and Arctic Engineering, Trondheim, Norway.
|
[39] |
Tomasicchio, G.R., D'Alessandro, F., Avossa, A.M., Riefolo, L., Musci, E., Ricciardelli, F. and Vicinanza, D., 2018. Experimental modelling of the dynamic behaviour of a Spar buoy wind turbine, Renewable Energy, 127, 412–432. doi: 10.1016/j.renene.2018.04.061
|
[40] |
Tran, T.T. and Kim, D.H., 2015. The aerodynamic interference effects of a floating offshore wind turbine experiencing platform pitching and yawing motions, Journal of Mechanical Science and Technology, 29(2), 549–561. doi: 10.1007/s12206-015-0115-0
|
[41] |
Tsugane, M., 2005. A study on ship’s drifting in wind and wave, The Journal of Japan Institute of Navigation, 112, 133–140. (in Japanese doi: 10.9749/jin.112.133
|
[42] |
Uihlein, A. and Magagna, D., 2016. Wave and tidal current energy - A review of the current state of research beyond technology, Renewable and Sustainable Energy Reviews, 58, 1070–1081. doi: 10.1016/j.rser.2015.12.284
|
[43] |
Utsunomiya, T., Nishida, E. and Sato, I., 2009. Wave response experiment on Spar-type floating bodies for offshore wind turbine, Proceedings of the 19th International Offshore and Polar Engineering Conference, Osaka, Japan.
|
[44] |
Wang, L. and Sweetman, B., 2013. Multibody dynamics of floating wind turbines with large-amplitude motion, Applied Ocean Research, 43, 1–10. doi: 10.1016/j.apor.2013.06.004
|
[45] |
Wen, B.R., Dong, X.J., Tian, X.L., Peng, Z.K., Zhang, W.M. and Wei, K.X., 2018. The power performance of an offshore floating wind turbine in platform pitching motion, Energy, 154, 508–521. doi: 10.1016/j.energy.2018.04.140
|
[46] |
Zhao, Y.S., She, X.H., He, Y.P., Yang, J.M., Peng, T. and Kou, Y.F., 2018. Experimental study on new multi-column tension-leg-type floating wind turbine, China Ocean Engineering, 32(2), 123–131. doi: 10.1007/s13344-018-0014-0
|
[47] |
Zhao, Y.S., Yang, J.M., He, Y.P. and Gu, M.T., 2016a. Dynamic response analysis of a multi-column tension-leg-type floating wind turbine under combined wind and wave loading, Journal of Shanghai Jiaotong University(Science)
|
[48] |
Zhao, Y.S., Yang, J.M., He, Y.P. and Gu, M.T., 2016b. Coupled dynamic response analysis of a multi-column tension-leg-type floating wind turbine, China Ocean Engineering, 30(4), 505–520. doi: 10.1007/s13344-016-0031-9
|