Citation: | Saeed MAHJOURI, Rasoul SHABANI, Ghader REZAZADEH, Peyman BADIEI. Active Control of A Piston-Type Absorbing Wavemaker with Fully Reflective Structure[J]. JOURNAL OF MECHANICAL ENGINEERING, 2020, 34(5): 730-737. doi: 10.1007/s13344-020-0066-9 |
[1] |
Anbarsooz, M., Passandideh-Fard, M. and Moghiman, M., 2013. Fully nonlinear viscous wave generation in numerical wave tanks, Ocean Engineering, 59, 73–85. doi: 10.1016/j.oceaneng.2012.11.011
|
[2] |
Belden, J. and Techet, A.H., 2011. Simultaneous quantitative flow measurement using PIV on both sides of the air-water interface for breaking waves, Experiments in Fluids, 50(1), 149–161. doi: 10.1007/s00348-010-0901-5
|
[3] |
Bullock, G.N. and Murton, G.J., 1989. Performance of a wedge-type absorbing wave maker, Journal of Waterway,Port,Coastal,and Ocean Engineering, 115(1), 1–17. doi: 10.1061/(ASCE)0733-950X(1989)115:1(1)
|
[4] |
Christensen, M. and Frigaard, P., 1994. Design of absorbing wavemaker based on digital filters, Proceedings of International Symposium: Waves-Physical and Numerical Modelling, Vancouver, pp. 100–109.
|
[5] |
Clément, A., 1996. Coupling of two absorbing boundary conditions for 2D time-domain simulations of free surface gravity waves, Journal of Computational Physics, 126(1), 139–151. doi: 10.1006/jcph.1996.0126
|
[6] |
De Mello, P.C., Carneiro, M.L., Tannuri, E.A., Kassab Jr., F., Marques, R.P., Adamowski, J.C. and Nishimoto, K., 2013. A control and automation system for wave basins, Mechatronics, 23(1), 94–107. doi: 10.1016/j.mechatronics.2012.11.004
|
[7] |
Higuera, P., Lara, J.L. and Losada, I.J., 2013. Realistic wave generation and active wave absorption for navier-stokes models: application to OpenFOAM®, Coastal Engineering, 71, 102–118. doi: 10.1016/j.coastaleng.2012.07.002
|
[8] |
Hirakuchi, H., Kajima, R. and Kawaguchi, T., 1990. Application of a piston-type absorbing wavemaker to irregular wave experiments, Coastal Engineering in Japan, 33(1), 11–24. doi: 10.1080/05785634.1990.11924520
|
[9] |
Khait, A. and Shemer, L., 2019. Nonlinear wave generation by a wavemaker in deep to intermediate water depth, Ocean Engineering, 182, 222–234. doi: 10.1016/j.oceaneng.2019.04.065
|
[10] |
Lin, P.Z. and Liu, P.L.F., 1999. Internal wave-maker for navier-stokes equations models, Journal of Waterway,Port,Coastal,and Ocean Engineering, 125(4), 207–215. doi: 10.1061/(ASCE)0733-950X(1999)125:4(207)
|
[11] |
Milgram, J.H., 1970. Active water-wave absorbers, Journal of Fluid Mechanics, 42(4), 845–859. doi: 10.1017/S0022112070001635
|
[12] |
Ouellet, Y. and Datta, I., 1986. A survey of wave absorbers, Journal of Hydraulic Research, 24(4), 265–280. doi: 10.1080/00221688609499305
|
[13] |
Saincher, S. and Banerjee, J., 2015. Design of a numerical wave tank and wave flume for low steepness waves in deep and intermediate water, Procedia Engineering, 116, 221–228. doi: 10.1016/j.proeng.2015.08.394
|
[14] |
Salter, S.H., 1981. Absorbing wave makers and wide tanks, Proceedings of Conference on Directional Wave Spectra Applications, Berkeley, California, USA, pp. 185–202.
|
[15] |
Schäffer, H.A., 2001. Active wave absorption in flumes and 3D basins, Proceedings of the 4th International Symposium on Ocean Wave Measurement and Analysis, San Francisco.
|
[16] |
Schäffer, H.A. and Klopman, G., 2000. Review of multidirectional active wave absorption methods, Journal of Waterway,Port,Coastal,and Ocean Engineering, 126(2), 88–97. doi: 10.1061/(ASCE)0733-950X(2000)126:2(88)
|
[17] |
Schäffer, H.A. and Jakobsen, K.P., 2003. Non-linear wave generation and active absorption in wave flumes, Proceedings of Long Waves Symposium 2003 in Parallel with XXX IAHR Congress, Greece, pp. 69–77.
|
[18] |
Senturk, U., 2011. Modeling nonlinear waves in a numerical wave tank with localized meshless RBF method, Computers & Fluids, 44(1), 221–228.
|
[19] |
Sheng, W.A. and Li, H., 2017. A method for energy and resource assessment of waves in finite water depths, Energies, 10(4), 460. doi: 10.3390/en10040460
|
[20] |
Spinneken, J. and Swan, C., 2009a. Second-order wave maker theory using force-feedback control. Part I: A new theory for regular wave generation, Ocean Engineering, 36(8), 539–548. doi: 10.1016/j.oceaneng.2009.01.019
|
[21] |
Spinneken, J. and Swan, C., 2009b. Second-order wave maker theory using force-feedback control. Part Ⅱ: an experimental verification of regular wave generation, Ocean Engineering, 36(8), 549–555. doi: 10.1016/j.oceaneng.2009.01.007
|
[22] |
Spinneken, J. and Swan, C., 2012. The operation of a 3D wave basin in force control, Ocean Engineering, 55, 88–100. doi: 10.1016/j.oceaneng.2012.07.024
|
[23] |
Stagonas, D., Warbrick, D., Muller, G. and Magagna, D., 2011. Surface tension effects on energy dissipation by small scale, experimental breaking waves,Coastal Engineering, 58(9), 826–836.
|
[24] |
Yang, H.Q., Li, M.G., Liu, S.X. and Chen, F.M., 2016. An iterative re-weighted least-squares algorithm for the design of active absorbing wavemaker controller, Journal of Hydrodynamics, 28(2), 206–218. doi: 10.1016/S1001-6058(16)60622-4
|
[25] |
Yang, H.Q., Li, M.G., Liu, S.X., Zhang, Q. and Wang, J., 2015. A piston-type active absorbing wavemaker system with delay compensation, China Ocean Engineering, 29(6), 917–924. doi: 10.1007/s13344-015-0064-5
|
[26] |
Yueh, C.Y. and Chuang, S.H., 2013. A piston-type porous wave energy converter theory, Journal of Marine Science and Technology, 21(3), 309–317.
|