Citation: | WANG Ke, WU Li, LI Yong-zheng, SUN Xiao-peng. Study on the Overload and Dwell-Fatigue Property of Titanium Alloy in Manned Deep Submersible[J]. JOURNAL OF MECHANICAL ENGINEERING, 2020, 34(5): 738-745. doi: 10.1007/s13344-020-0067-8 |
[1] |
Chen, C.R., 2002. Fatigue and Fracture, Huazhong University of Science and Technology Press, Wuhan, China. (in Chinese)
|
[2] |
Chen, F.L., Wang, F. and Cui, W.C., 2011. An improved constitutive model to predict fatigue crack growth rate under constant-amplitude loading with single and multiple overload, Proceedings of the Institution of Mechanical Engineers,Part M:Journal of Engineering for the Maritime Environment, 225(3), 271–281. doi: 10.1177/1475090211405760
|
[3] |
Cui, W.C., Wang, F. and Huang, X.P., 2011. A unified fatigue life prediction method for marine structures, Marine Structures, 24(2), 153–181. doi: 10.1016/j.marstruc.2011.02.007
|
[4] |
Irwin, G.R., 1960. Fracture mode transition for a crack traversing a plate, Journal of Basic Engineering, 82(2), 417–423. doi: 10.1115/1.3662608
|
[5] |
Jono, M., Sugeta, A. and Uematsu, Y., 1999. Fatigue crack growth and crack closure behavior of Ti-6AI-4V alloy under variable-amplitude loadings, in: Advances in Fatigue Crack Closure Measurement and Analysis: Second Volume. ASTM Special Technical Publication 1343, McClung, R.C., Newman, J.C. Jr. (eds.), pp.987−1006.
|
[6] |
Lei, H.G., Fu, Q. and Liu, X.J., 2010. Progress in fatigue research of steel structures in China in the past 30 years, Journal of Building Structures, (S1), 84–91. (in Chinese)
|
[7] |
Li, X.Y., 2015. Research on Fatigue Crack Propagation Behavior Under A Single Tensile Overload, MSc. Thesis, Hefei University of Technology, Hefei, China. (in Chinese)
|
[8] |
Potirniche, G.P., 2019. A closure model for predicting crack growth under creep-fatigue loading, International Journal of Fatigue, 125, 58–71. doi: 10.1016/j.ijfatigue.2019.03.029
|
[9] |
Rege, K., Gronsund, J. and Pavlou, D.G., 2019. Mixed-mode I and II fatigue crack growth retardation due to overload: An experimental study, International Journal of Fatigue, 129, 105227. doi: 10.1016/j.ijfatigue.2019.105227
|
[10] |
Riedel, H. and Rice, J.R., 1980. Tensile crack in creeping solids, Fracture Mechanics: Twelfth Conference, ASTM STP 700, American Society for Testing and Materials, 112-30.
|
[11] |
Schijve, J. and Broek, D., 1962. Crack propagation: The results of a test Programme based on a gust spectrum with variable amplitude loading, Aircraft Engineering and Aerospace Technology, 34(11), 314–316. doi: 10.1108/eb033633
|
[12] |
Silva, F.S., 2007. Fatigue crack propagation after overloading and underloading at negative stress rations, International Journal of Fatigue, 29(9−11), 1757–1771.
|
[13] |
Sunder, R., Biakov, A., Eremin A. and Panin, S., 2016. Synergy of crack closure. near-tip residual stress and crack-tip blunting in crack growth under periodic overloads-A fractographic study, International Journal of Fatigue, 93, 18–29. doi: 10.1016/j.ijfatigue.2016.08.004
|
[14] |
Wang, K., 2015. Study on the Cold Dwell-Fatigue Life Prediction Method for Titanium Alloys, Ph.D. Thesis, Shanghai Jiao Tong University, Shanghai, China. (in Chinese)
|
[15] |
Wang, K., Wang, F., Cui, W.C. and Li, D.Q., 2014a. Prediction of short fatigue crack growth life by unified fatigue life prediction method, Journal of Ship Mechanics, 18(6), 678–689.
|
[16] |
Wang, K., Wang, F., Cui, W.C., Hayat, T. and Ahmad, B., 2014b. Prediction of short fatigue crack growth of Ti-6Al-4V, Fatigue & Fracture of Engineering Materials & Structures, 37(10), 1075–1086.
|
[17] |
Wang, K., Wang, Z., Wang, F. and Cui, W.C., 2017. Effect of overload and dwell time on fatigue crack growth rate of metal materials, Journal of Ship Mechanics, 21(7), 895–906. (in Chinese)
|
[18] |
Wu, Y.Z. and Bao, R., 2018. Fatigue crack tip strain evolution and crack growth prediction under single overload in laser melting deposited Ti-6.5Al-3.5Mo-1.5Zr-0.3Si titanium alloy, International Journal of Fatigue, 116, 462–472. doi: 10.1016/j.ijfatigue.2018.07.011
|
[19] |
Yumak, N. and Aslantas, K., 2019. Effect of notch orientation and single overload on crack interaction in Ti-6Al-4V alloy, Journal of the Brazilian Society of Mechanical Sciences and Engineering, 41, 318. doi: 10.1007/s40430-019-1816-6
|
[20] |
Zhao, T.W., Zhang, J.X. and Jiang, Y.Y., 2008. A study of fatigue crack growth of 7075-T651 aluminum alloy, International Journal of Fatigue, 30(7), 1169–1180. doi: 10.1016/j.ijfatigue.2007.09.006
|