Citation: | Meiru Jia, Nan Luo, Xiangbing Meng, Xiaoguang Song, Yanhui Jing, Liquan Kou, Guifu Liu, Xiahe Huang, Yingchun Wang, Jiayang Li, Bing Wang, Hong Yu. OsMPK4 promotes phosphorylation and degradation of IPA1 in response to salt stress to confer salt tolerance in rice[J]. JOURNAL OF MECHANICAL ENGINEERING. doi: 10.1016/j.jgg.2022.06.009 |
Bart, R., Chern, M., Park, C. J., Bartley, L. Ronald, P.C., 2006. A novel system for gene silencing using siRNAs in rice leaf and stem-derived protoplasts. Plant Methods 2, 13
|
Chen, R., Deng, Y., Ding, Y., Guo, J., Qiu, J., Wang, B., Wang, C., Xie, Y., Zhang, Z., Chen, J., et al., 2022. Rice functional genomics:decades' efforts and roads ahead. Sci. China Life Sci. 65, 33-92
|
Chen, X., Ding, Y., Yang, Y., Song, C., Wang, B., Yang, S., Guo, Y., Gong, Z., 2021. Protein kinases in plant responses to drought, salt, and cold stress. J. Integr. Plant Biol. 63, 53-78
|
Ding, Y., Li, H., Zhang, X., Qi, X., Gong, Z., Yang, S., 2015. OST1 kinase modulates freezing tolerance by enhancing ICE1 stability in Arabidopsis. Dev. Cell 32, 278-289
|
Evrard, A., Kumar, M., Lecourieux, D., Lucks, J., von Koskull-Doring, P., Hirt, H., 2013. Regulation of the heat stress response in Arabidopsis by MPK6-targeted phosphorylation of the heat stress factor HsfA2. Peer J. 1, e59
|
Gao, F., Su, Q., Fan, Y., Wang, L., 2010. Expression pattern and core region analysis of AtMPK3 promoter in response to environmental stresses. Sci. China. Life Sci. 53, 1315-1321
|
Gong, Z., Xiong, L., Shi, H., Yang, S., Herrera-Estrella, L.R., Xu, G., Chao, D.Y., Li, J., Wang, P.Y., Qin, F., et al., 2020. Plant abiotic stress response and nutrient use efficiency. Sci. China. Life Sci. 63, 635-674
|
Hamel, L.P., Nicole, M.C., Sritubtim, S., Morency, M.J., Ellis, M., Ehlting, J., Beaudoin, N., Barbazuk, B., Klessig, D., Lee, J., et al., 2006. Ancient signals:comparative genomics of plant MAPK and MAPKK gene families. Trends Plant Sci. 11, 192-198
|
Hazell, P., Wood, S., 2008. Drivers of change in global agriculture. Philos. Trans. R. Soc. Lond. B. Biol. Sci. 363, 495-515
|
Jagodzik, P., Tajdel-Zielinska, M., Ciesla, A., Marczak, M., Ludwikow, A., 2018. Mitogen-activated protein kinase cascades in plant hormone signaling. Front. Plant Sci. 9, 1387
|
Jalmi, S.K., Sinha, A.K., 2016. Functional involvement of a mitogen activated protein kinase module, OsMKK3-OsMPK7-OsWRK30 in mediating resistance against Xanthomonas oryzae in rice. Sci. Rep. 6, 37974
|
Jerome Jeyakumar, J. M., Ali, A., Wang, W. M., Thiruvengadam, M., 2020. Characterizing the role of the miR156-SPL network in plant development and stress response. Plants 9, 1206
|
Jia, W., Li, B., Li, S., Liang, Y., Wu, X., Ma, M., Wang, J., Gao, J., Cai, Y., Zhang, Y., et al., 2016. Mitogen-activated protein kinase cascade MKK7-MPK6 plays important roles in plant development and regulates shoot branching by phosphorylating PIN1 in Arabidopsis. PLoS Biol. 1, e1002550
|
Jiao, Y., Wang, Y., Xue, D., Wang, J., Yan, M., 2010. Regulation of OsSPL14 by OsmiR156 defines ideal plant architecture in rice. Nat. Genet. 42, 541-544
|
Kumar, K., Sinha, A.K., 2013. Overexpression of constitutively active mitogen activated protein kinase kinase 6 enhances tolerance to salt stress in rice. Rice (N Y), 6, 25
|
Lan, T., Zheng, Y., Su, Z., Yu, S., Song, H., Zheng, X., Lin, G., Wu, W., 2019. OsSPL10, a SBP-Box Gene, plays a dual role in salt tolerance and trichome formation in rice (Oryza sativa L.). G3 (Bethesda). 9, 4107-4114
|
Li, X., Yu, B., Wu, Q., Min, Q., Zeng, R., Xie, Z., Huang, J., 2021. OsMADS23 phosphorylated by SAPK9 confers drought and salt tolerance by regulating ABA biosynthesis in rice. PLoS Genet. 17, e1009699
|
Liao, Z., Yu, H., Duan, J., Yuan, K., Yu, C., Meng, X., Kou, L., Chen, M., Jing, Y., Liu, G., et al., 2019. SLR1 inhibits MOC1 degradation to coordinate tiller number and plant height in rice. Nat. Commun. 10, 2738
|
Liu, M., Shi, Z., Zhang, X., Wang, M., Zhang, K., Liu, J., Hu, X., Di, C., Qian, Q., He, Z., Yang, D., 2019. Inducible overexpression of Ideal Plant Architecture1 improves both yield and disease resistance in rice. Nat. Plants 5, 389-400
|
Mao, G., Meng, X., Liu, Y., Zheng, Z., Chen, Z., Zhang, S., 2011. Phosphorylation of a WRKY transcription factor by two pathogen-responsive MAPKs drives phytoalexin biosynthesis in Arabidopsis. Plant Cell 23, 1639-1653
|
Meng, X., Xu, J., He, Y., Yang, K.Y., Mordorski, B., Liu, Y., Zhang, S., 2013. Phosphorylation of an ERF transcription factor by Arabidopsis MPK3/MPK6 regulates plant defense gene induction and fungal resistance. Plant Cell 25, 1126-1142
|
Meng, X., Yu, H., Zhang, Y., Zhuang, F., Song, X., Gao, S., Gao, C., Li, J., 2017. Construction of a genome-wide mutant library in rice using CRISPR/Cas9. Mol. Plant, 10, 1238-1241
|
Miura, K., Ikeda, M., Matsubara, A., Song, X. J., Ito, M., Asano, K., Matsuoka, M., Kitano, H., Ashikari, M., 2010. OsSPL14 promotes panicle branching and higher grain productivity in rice. Nat. Genet. 42, 545-549
|
Munns, R., Tester, M., 2008. Mechanisms of salinity tolerance. Annu. Rev. Plant Biol. 59, 651-681
|
Na Y.J., Choi H.K., Park M.Y., Choi S.W., Xuan Vo K.T., Jeon J.S., Kim S.Y., 2019. OsMAPKKK63 is involved in salt stress response and seed dormancy control. Plant Signal. Behav. 14, e1578633
|
Perez-Salamo, I., Papdi, C., Rigo, G., Zsigmond, L., Vilela, B., Lumbreras, V., Nagy, I., Horvath, B., Domoki, M., Darula, Z., et al., 2014. The Heat Shock Factor A4A confers salt tolerance and is regulated by oxidative stress and the mitogen-activated protein kinases MPK3 and MPK6. Plant Physiol. 165, 319-334
|
Qadir, M., Quillerou, E., Nangia, V., Murtaza, G., Singh, M., Thomas, R.J., Drechsel, P., Noble, A.D., 2014. Economics of salt-induced land degradation and restoration. Nat. Resour. Forum. 38, 282-295
|
Rodriguez, M.C., Petersen, M., Mundy, J., 2010. Mitogen-activated protein kinase signaling in plants. Annu. Rev. Plant Biol. 61, 621-649
|
Shao, G., Lu, Z., Xiong, J., Wang, B., Jing, Y., Meng, X., Liu, G., Ma, H., Liang, Y., Chen, F., et al., 2019. Tiller bud formation regulators MOC1 and MOC3 cooperatively promote tiller bud outgrowth by activating FON1 expression in rice. Mol. Plant 12, 1090-1102
|
Shen, H., Liu, C., Zhang, Y., Meng, X., Zhou, X., Chu, C., Wang, X., 2012. OsWRKY30 is activated by MAP kinases to confer drought tolerance in rice. Plant Mol. Biol. 80, 241-253
|
Shen, X.L., Bin, Y., Liu, H.B., Li, X.H., Xu, C.G., Wang S.P., 2010. Opposite functions of a rice mitogen-activated protein kinase during the process of resistance against Xanthomonas oryzae. Plant J. 64, 86-99
|
Song, X., Lu, Z., Yu, H., Shao G., Xiong J., Meng, X., Jing, Y., Liu, G., Xiong, G., Duan, J., et al., 2017. IPA1 functions as a downstream transcription factor repressed by D53 in strigolactone signaling in rice. Cell Res. 27, 1128-1141
|
Unte, U. S., Sorensen A. M., Pesaresi, P., Gandikota, M., Leister, D., Saedler, H., Huijser, P., 2003. SPL8, an SBP-box gene that affects pollen sac development in Arabidopsis. Plant Cell 15, 1009-1019
|
Wang, B., Smith, S.M., Li, J., 2018a. Genetic regulation of shoot architecture. Annu. Rev. Plant Biol. 69, 437-468
|
Wang, B., Wang, H., 2017. IPA1:A New "Green Revolution" Gene? Mol. Plant. 10, 779-781
|
Wang, F., Jing, W., Zhang, W., 2014. The mitogen-activated protein kinase cascade MKK1-MPK4 mediates salt signaling in rice. Plant Sci. 227, 181-189
|
Wang, J., Long, X., Chern, M., Chen, X., 2021. Understanding the molecular mechanisms of trade-offs between plant growth and immunity. Sci. China. Life Sci. 64, 234-241
|
Wang, J., Yu, H., Xiong, G., Lu, Z., Jiao, Y., Meng, X., Liu, G., Chen, X., Wang, Y., Li, J., et al., 2017. Tissue-specific ubiquitination by IPA1 INTERACTING PROTEIN1 modulates IPA1 protein levels to regulate plant architecture in rice. Plant Cell 29, 697-707
|
Wang, J., Zhou, L., Shi, H., Chern, M., Yu H., Yi, H., He, M., Yin, J., Zhu, X., Li, Y., 2018b. A single transcription factor promotes both yield and immunity in rice. Science 361, 1026-1028
|
Xie, G., Kato, H., Imai, R., 2012. Biochemical identification of the OsMKK6-OsMPK3 signalling pathway for chilling stress tolerance in rice. Biochem. J. 443, 95-102
|
Xie, K.B., Wu C.Q., Xiong, L.Z., 2006. Genomic organization, differential expression, and interaction of SQUAMOSA promoter-binding-like transcription factors and microRNA156 in rice. Plant Physiol. 142, 280-293
|
Xiong L.Z., Yang Y.N., 2003. Disease resistance and abiotic stress tolerance in rice are inversely modulated by an abscisic acid-inducible mitogen-activated protein kinase. Plant Cell 15, 745-759
|
Yang, C., Ma, B., He, S., Xiong, Q., Duan, K., Yin, C., Chen, H., Lu, X., Chen, S., Zhang, J., 2015. MAOHUZI6/ETHYLENE INSENSITIVE3-LIKE1 and ETHYLENE INSENSITIVE3-LIKE2 regulate ethylene response of roots and coleoptiles and negatively affect salt tolerance in rice. Plant Physiol. 169, 148-165
|
Yu, L.J., Nie, J.N., Cao, C.Y., Jin, Y.K., Yan, M., Wang, F.Z., Liu, J., Xiao, Y., Liang, Y.H., Zhang, W.H., 2010. Phosphatidic acid mediates salt stress response by regulation of MPK6 in Arabidopsis thaliana. New Phytol. 188, 762-773
|
Zelm, E., Zhang, Y.X., Testerink, C., 2020. Salt tolerance mechanisms of plants. Annu. Rev. Plant Biol. 71, 403-433
|
Zhang, L., Yu, H., M, B., Liu, G., Wang, J., Wang J., Gao, R., Li, J., Liu, J., Xu, J., et al., 2017. A natural tandem array alleviates epigenetic repression of IPA1 and leads to superior yielding rice. Nat. Commun. 8, 14789
|
Zhang, Y., Wang, P., Shao, W., Zhu, J.K., Dong, J., 2015. The BASL polarity protein controls a MAPK signaling feedback loop in asymmetric cell division. Dev. Cell 33, 136-149
|
Zhang, Z., Liu, H., Sun, C., Ma, Q., Bu, H., Chong, K., Xu, Y., 2018. A C2H2 zinc-finger protein OsZFP213 interacts with OsMAPK3 to enhance salt tolerance in rice. J. Plant Physiol. 229, 100-110
|
Zhao, S., Zhang, Q., Liu, M., Zhou, H., Ma, C., Wang, P., 2021. Regulation of plant responses to salt stress. Int. J. Mol. Sci. 22, 4609
|
Zhu, M., He, Y., Zhu, M., Ahmad, A., Xu, S., He, Z., Jiang, S., Huang, J., Li, Z., Liu, S., et al., 2022. ipa1 improves rice drought tolerance at seedling stage mainly through activating abscisic acid pathway. Plant Cell Rep. 41, 221-232
|