Citation: | Liu Chaoyue, Guo Jingshu, Yu Laiwen, Li Jiang, Zhang Ming, Li Huan, Shi Yaocheng, Dai Daoxin. Silicon/2D-material photodetectors: from near-infrared to mid-infrared[J]. JOURNAL OF MECHANICAL ENGINEERING, 2021, 10(2): 1164-1184. doi: 10.1038/s41377-021-00551-4 |
[1] |
Ferrari, A. C. et al. Science and technology roadmap for graphene, related two-dimensional crystals, and hybrid systems. Nanoscale 7, 4598–4810 (2015). doi: 10.1039/C4NR01600A
|
[2] |
Liu, J. et al. Semimetals for high-performance photodetection. Nat. Mater. 19, 830–837 (2020). http://www.nature.com/articles/s41563-020-0715-7?utm_source=other&utm_medium=other&utm_content=null
|
[3] |
Chaves, A. et al. Bandgap engineering of two-dimensional semiconductor materials. npj 2D Mater. Appl. 4, 29 (2020). doi: 10.1038/s41699-020-00162-4
|
[4] |
Illarionov, Y. Y. et al. Insulators for 2D nanoelectronics: the gap to bridge. Nat. Commun. 11, 3385 (2020). doi: 10.1038/s41467-020-16640-8
|
[5] |
Koppens, F. H. L. et al. Photodetectors based on graphene, other two-dimensional materials and hybrid systems. Nat. Nanotechnol. 9, 780–793 (2014). doi: 10.1038/nnano.2014.215
|
[6] |
Long, M. S. et al. Progress, challenges, and opportunities for 2D material based photodetectors. Adv. Funct. Mater. 29, 1803807 (2019). doi: 10.1002/adfm.201803807
|
[7] |
Chen, X. Q. et al. Graphene hybrid structures for integrated and flexible optoelectronics. Adv. Mater. 32, 1902039 (2019). doi: 10.1002/adma.201902039
|
[8] |
Vicarelli, L. et al. Graphene field-effect transistors as room-temperature terahertz detectors. Nat. Mater. 11, 865–871 (2012). doi: 10.1038/nmat3417
|
[9] |
Akinwande, D. et al. Graphene and two-dimensional materials for silicon technology. Nature 573, 507–518 (2019). doi: 10.1038/s41586-019-1573-9
|
[10] |
Li, J. et al. Hybrid silicon photonic devices with two-dimensional materials. Nanophotonics 9, 2295–2314 (2020). doi: 10.1515/nanoph-2020-0093
|
[11] |
Cao, G. Q. et al. Multicolor broadband and fast photodetector based on InGaAs–Insulator–graphene hybrid heterostructure. Adv. Electron. Mater. 6, 1901007 (2020). doi: 10.1002/aelm.201901007
|
[12] |
Deng, S. K. et al. Strain engineering in two-dimensional nanomaterials beyond graphene. Nano Today 22, 14–35 (2018). doi: 10.1016/j.nantod.2018.07.001
|
[13] |
Lukman, S. et al. High oscillator strength interlayer excitons in two-dimensional heterostructures for mid-infrared photodetection. Nat. Nanotechnol. 15, 675–682 (2020). doi: 10.1038/s41565-020-0717-2
|
[14] |
Rahim, A. et al. Open-access silicon photonics: current status and emerging initiatives. Proc. IEEE 106, 2313–2330 (2018). doi: 10.1109/JPROC.2018.2878686
|
[15] |
Bogaerts, W. & Chrostowski, L. Silicon photonics circuit design: methods, tools and challenges. Laser Photonics Rev. 12, 1700237 (2018). doi: 10.1002/lpor.201700237
|
[16] |
Soref, R. Group IV photonics: enabling 2 µm communications. Nat. Photonics 9, 358–359 (2015). doi: 10.1038/nphoton.2015.87
|
[17] |
Sun, J. et al. Large-scale nanophotonic phased array. Nature 493, 195–199 (2013). doi: 10.1038/nature11727
|
[18] |
Lavchiev, V. M. & Jakoby, B. Photonics in the mid-infrared: challenges in single-chip integration and absorption sensing. IEEE J. Sel. Top. Quantum Electron. 23, 8200612 (2017). doi: 10.1109/JSTQE.2016.2619330
|
[19] |
Shen, Y. C. et al. Deep learning with coherent nanophotonic circuits. Nat. Photonics 11, 441–446 (2017). doi: 10.1038/nphoton.2017.93
|
[20] |
Wang, J. W. et al. Integrated photonic quantum technologies. Nat. Photonics 14, 273–284 (2020). doi: 10.1038/s41566-019-0532-1
|
[21] |
Rieke, G. H. Detection of Light: From the Ultraviolet to the Submillimeter. 2nd edn. (Cambridge University Press, Cambridge, 2003).
|
[22] |
Huang, Z. H. et al. Microstructured silicon photodetector. Appl. Phys. Lett. 89, 033506 (2006). doi: 10.1063/1.2227629
|
[23] |
Chen, H. T. et al. 100-Gbps RZ data reception in 67-GHz Si-contacted germanium waveguide p-i-n photodetectors. J. Lightwave Technol. 35, 722–726 (2017). doi: 10.1109/JLT.2016.2593942
|
[24] |
Roelkens, G. et al. III-V-on-silicon photonic devices for optical communication and sensing. Photonics 2, 969–1004 (2015). doi: 10.3390/photonics2030969
|
[25] |
Capper, P. & Garland, J. W. Mercury Cadmium Telluride: Growth, Properties and Applications. (Wiley, Hoboken, 2011).
|
[26] |
Thomson, D. et al. Roadmap on silicon photonics. J. Opt. 18, 073003 (2016). doi: 10.1088/2040-8978/18/7/073003
|
[27] |
Liu, Y. et al. Two-dimensional transistors beyond graphene and TMDCs. Chem. Soc. Rev. 47, 6388–6409 (2018). doi: 10.1039/C8CS00318A
|
[28] |
Xiong, Z. & Tang, J. Y. Two-dimensional materials and hybrid systems for photodetection. in Synthesis, Modeling, and Characterization of 2D Materials, and Their Heterostructures. (eds. Yang, E. H. et al. ) 325–349 (Elsevier, 2020).
|
[29] |
Chen, X. L. et al. Widely tunable black phosphorus mid-infrared photodetector. Nat. Commun. 8, 1672 (2017). doi: 10.1038/s41467-017-01978-3
|
[30] |
Bonaccorso, F. et al. Graphene photonics and optoelectronics. Nat. Photonics 4, 611–622 (2010). doi: 10.1038/nphoton.2010.186
|
[31] |
Mak, K. F. & Shan, J. Photonics and optoelectronics of 2D semiconductor transition metal dichalcogenides. Nat. Photonics 10, 216–226 (2016). doi: 10.1038/nphoton.2015.282
|
[32] |
Dong, B. W. et al. Black phosphorus based photodetectors. in Fundamentals and Applications of Phosphorus Nanomaterials. (ed. Ji, H. F. ) Ch. 3 (American Chemical Society, 2019).
|
[33] |
Amani, M. et al. Solution-synthesized high-mobility tellurium nanoflakes for short-wave infrared photodetectors. ACS Nano 12, 7253–7263 (2018). doi: 10.1021/acsnano.8b03424
|
[34] |
Yu, T. T. et al. Two-dimensional GeP-based broad-band optical switches and photodetectors. Adv. Optical Mater. 8, 1901490 (2020). doi: 10.1002/adom.201901490
|
[35] |
Wang, Y. et al. High-speed infrared two-dimensional platinum diselenide photodetectors. Appl. Phys. Lett. 116, 211101 (2020). doi: 10.1063/5.0010034
|
[36] |
Buscema, M. et al. Photocurrent generation with two-dimensional van der Waals semiconductors. Chem. Soc. Rev. 44, 3691–3718 (2015). doi: 10.1039/C5CS00106D
|
[37] |
Sze, S. M. Physics of Semiconductor Devices. (John Wiley and Sons, New York, 1981).
|
[38] |
Di Bartolomeo, A. Graphene Schottky diodes: an experimental review of the rectifying graphene/semiconductor heterojunction. Phys. Rep. 606, 1–58 (2016). doi: 10.1016/j.physrep.2015.10.003
|
[39] |
Scales, C. & Berini, P. Thin-film Schottky barrier photodetector models. IEEE J. Quantum Electron. 46, 633–643 (2010). doi: 10.1109/JQE.2010.2046720
|
[40] |
Miao, J. S. & Wang, C. Avalanche photodetectors based on two-dimensional layered materials. Nano Res. https://doi.org/10.1007/s12274-020-3001-8 (2020).
|
[41] |
Ma, Q. et al. Tuning ultrafast electron thermalization pathways in a van der Waals heterostructure. Nat. Phys. 12, 455–459 (2016). doi: 10.1038/nphys3620
|
[42] |
Vu, Q. A. et al. Tuning carrier tunneling in van der waals heterostructures for ultrahigh detectivity. Nano Lett. 17, 453–459 (2017). doi: 10.1021/acs.nanolett.6b04449
|
[43] |
Furchi, M. M. et al. Mechanisms of photoconductivity in atomically thin MoS2. Nano Lett. 14, 6165–6170 (2014). doi: 10.1021/nl502339q
|
[44] |
Zhu, W. J. et al. Electronic transport and device prospects of monolayer molybdenum disulphide grown by chemical vapour deposition. Nat. Commun. 5, 3087 (2014). doi: 10.1038/ncomms4087
|
[45] |
Guo, X. T. et al. High-performance graphene photodetector using interfacial gating. Optica 3, 1066–1070 (2016). doi: 10.1364/OPTICA.3.001066
|
[46] |
Liu, Y. et al. Highly efficient and air-stable infrared photodetector based on 2D layered graphene-black phosphorus heterostructure. ACS Appl. Mater. Interfaces 9, 36137–36145 (2017). doi: 10.1021/acsami.7b09889
|
[47] |
Malic, E. et al. Carrier dynamics in graphene: ultrafast many-particle phenomena. Ann. der Phys. 529, 1700038 (2017). doi: 10.1002/andp.201700038
|
[48] |
Ma, Q. et al. Competing channels for hot-electron cooling in graphene. Phys. Rev. Lett. 112, 247401 (2014). doi: 10.1103/PhysRevLett.112.247401
|
[49] |
Low, T. et al. Origin of photoresponse in black phosphorus phototransistors. Phys. Rev. B 90, 081408 (2014). doi: 10.1103/PhysRevB.90.081408
|
[50] |
Du, X. et al. Graphene-based bolometers. Graphene 2D Mater. 1, 1–22 (2014).
|
[51] |
Yan, J. et al. Dual-gated bilayer graphene hot-electron bolometer. Nat. Nanotechnol. 7, 472–478 (2012). doi: 10.1038/nnano.2012.88
|
[52] |
Jago, R., Malic, E. & Wendler, F. Microscopic origin of the bolometric effect in graphene. Phys. Rev. B 99, 035419 (2019). doi: 10.1103/PhysRevB.99.035419
|
[53] |
Efetov, D. K. et al. Fast thermal relaxation in cavity-coupled graphene bolometers with a Johnson noise read-out. Nat. Nanotechnol. 13, 797–801 (2018). doi: 10.1038/s41565-018-0169-0
|
[54] |
Blaikie, A., Miller, D. & Alemán, B. J. A fast and sensitive room-temperature graphene nanomechanical bolometer. Nat. Commun. 10, 4726 (2019). doi: 10.1038/s41467-019-12562-2
|
[55] |
Walsh, E. D. et al. Graphene-based Josephson-junction single-photon detector. Phys. Rev. Appl. 8, 024022 (2017). doi: 10.1103/PhysRevApplied.8.024022
|
[56] |
Vora, H. et al. Bolometric response in graphene based superconducting tunnel junctions. Appl. Phys. Lett. 100, 153507 (2012). doi: 10.1063/1.3703117
|
[57] |
Gabor, N. M. et al. Hot carrier–assisted intrinsic photoresponse in graphene. Science 334, 648–652 (2011). doi: 10.1126/science.1211384
|
[58] |
Guo, J. S. et al. High-performance silicon-graphene hybrid plasmonic waveguide photodetectors beyond 1.55 μm. Light. : Sci. Appl. 9, 29 (2020). doi: 10.1038/s41377-020-0263-6
|
[59] |
Xia, F. N. et al. Ultrafast graphene photodetector. Nat. Nanotechnol. 4, 839–843 (2009). doi: 10.1038/nnano.2009.292
|
[60] |
Shiue, R. J. et al. High-responsivity graphene–boron nitride photodetector and autocorrelator in a silicon photonic integrated circuit. Nano Lett. 15, 7288–7293 (2015). doi: 10.1021/acs.nanolett.5b02368
|
[61] |
Tielrooij, K. J. et al. Generation of photovoltage in graphene on a femtosecond timescale through efficient carrier heating. Nat. Nanotechnol. 10, 437–443 (2015). doi: 10.1038/nnano.2015.54
|
[62] |
Tielrooij, K. J. et al. Hot-carrier photocurrent effects at graphene-metal interfaces. J. Phys. 27, 164207 (2015).
|
[63] |
Freitag, M. et al. Photoconductivity of biased graphene. Nat. Photonics 7, 53–59 (2013). doi: 10.1038/nphoton.2012.314
|
[64] |
Bie, Y. Q. et al. A MoTe2-based light-emitting diode and photodetector for silicon photonic integrated circuits. Nat. Nanotechnol. 12, 1124–1129 (2017). doi: 10.1038/nnano.2017.209
|
[65] |
Buscema, M. et al. Photovoltaic effect in few-layer black phosphorus PN junctions defined by local electrostatic gating. Nat. Commun. 5, 4651 (2014). doi: 10.1038/ncomms5651
|
[66] |
Lopez-Sanchez, O. et al. Ultrasensitive photodetectors based on monolayer MoS2. Nat. Nanotechnol. 8, 497–501 (2013). doi: 10.1038/nnano.2013.100
|
[67] |
Guo, Q. S. et al. Black phosphorus mid-infrared photodetectors with high gain. Nano Lett. 16, 4648–4655 (2016). doi: 10.1021/acs.nanolett.6b01977
|
[68] |
Huang, L. et al. Waveguide-integrated black phosphorus photodetector for mid-infrared applications. ACS Nano 13, 913–921 (2019). doi: 10.1021/acsnano.8b08758
|
[69] |
Ma, Y. M. et al. High-responsivity mid-infrared black phosphorus slow light waveguide photodetector. Adv. Optical Mater. 8, 2000337 (2020). doi: 10.1002/adom.202000337
|
[70] |
Maiti, R. et al. Strain-engineered high-responsivity MoTe2 photodetector for silicon photonic integrated circuits. Nat. Photonics 14, 578–584 (2020). doi: 10.1038/s41566-020-0647-4
|
[71] |
Youngblood, N. et al. Waveguide-integrated black phosphorus photodetector with high responsivity and low dark current. Nat. Photonics 9, 247–252 (2015). doi: 10.1038/nphoton.2015.23
|
[72] |
Yin, Y. L. et al. High-speed and high-responsivity hybrid silicon/black-phosphorus waveguide photodetectors at 2 μm. Laser Photonics Rev. 13, 1900032 (2019). doi: 10.1002/lpor.201900032
|
[73] |
Hong, T. et al. Polarized photocurrent response in black phosphorus field-effect transistors. Nanoscale 6, 8978–8983 (2014). doi: 10.1039/C4NR02164A
|
[74] |
Konstantatos, G. et al. Hybrid graphene–quantum dot phototransistors with ultrahigh gain. Nat. Nanotechnol. 7, 363–368 (2012). doi: 10.1038/nnano.2012.60
|
[75] |
Ni, Z. Y. et al. Plasmonic silicon quantum dots enabled high-sensitivity ultrabroadband photodetection of graphene-based hybrid phototransistors. ACS Nano 11, 9854–9862 (2017). doi: 10.1021/acsnano.7b03569
|
[76] |
Liu, Y. D. et al. Planar carbon nanotube–graphene hybrid films for high-performance broadband photodetectors. Nat. Commun. 6, 8589 (2015). doi: 10.1038/ncomms9589
|
[77] |
Shin, G. H. et al. Ultrasensitive phototransistor based on WSe2–MoS2 van der Waals heterojunction. Nano Lett. 20, 5741–5748 (2020). doi: 10.1021/acs.nanolett.0c01460
|
[78] |
Chen, Z. F. et al. Synergistic effects of plasmonics and electron trapping in graphene short-wave infrared photodetectors with ultrahigh responsivity. ACS Nano 11, 430–437 (2017). doi: 10.1021/acsnano.6b06172
|
[79] |
Liu, J. J. et al. Silicon-graphene conductive photodetector with ultra-high responsivity. Sci. Rep. 7, 40904 (2017). doi: 10.1038/srep40904
|
[80] |
Venuthurumilli, P. K., Ye, P. D. & Xu, X. F. Plasmonic resonance enhanced polarization-sensitive photodetection by black phosphorus in near infrared. ACS Nano 12, 4861–4867 (2018). doi: 10.1021/acsnano.8b01660
|
[81] |
Wang, X. D. et al. Ultrasensitive and broadband MoS2 photodetector driven by ferroelectrics. Adv. Mater. 27, 6575–6581 (2015). doi: 10.1002/adma.201503340
|
[82] |
Yu, W. J. et al. Highly efficient gate-tunable photocurrent generation in vertical heterostructures of layered materials. Nat. Nanotechnol. 8, 952–958 (2013). doi: 10.1038/nnano.2013.219
|
[83] |
Britnell, L. et al. Strong light-matter interactions in heterostructures of atomically thin films. Science 340, 1311–1314 (2013). doi: 10.1126/science.1235547
|
[84] |
Massicotte, M. et al. Picosecond photoresponse in van der Waals heterostructures. Nat. Nanotechnol. 11, 42–46 (2016). doi: 10.1038/nnano.2015.227
|
[85] |
Heo, J. et al. Reconfigurable van der Waals heterostructured devices with metal–insulator transition. Nano Lett. 16, 6746–6754 (2016). doi: 10.1021/acs.nanolett.6b02199
|
[86] |
Long, M. S. et al. Broadband photovoltaic detectors based on an atomically thin heterostructure. Nano Lett. 16, 2254–2259 (2016). doi: 10.1021/acs.nanolett.5b04538
|
[87] |
Lee, C. H. et al. Atomically thin p–n junctions with van der Waals heterointerfaces. Nat. Nanotechnol. 9, 676–681 (2014). doi: 10.1038/nnano.2014.150
|
[88] |
Yang, S. et al. Monolithic interface contact engineering to boost optoelectronic performances of 2D semiconductor photovoltaic heterojunctions. Nano Lett. 20, 2443–2451 (2020). doi: 10.1021/acs.nanolett.9b05162
|
[89] |
Ma, P. et al. Fast MoTe2 waveguide photodetector with high sensitivity at telecommunication wavelengths. ACS Photonics 5, 1846–1852 (2018). doi: 10.1021/acsphotonics.8b00068
|
[90] |
Flöry, N. et al. Waveguide-integrated van der Waals heterostructure photodetector at telecom wavelengths with high speed and high responsivity. Nat. Nanotechnol. 15, 118–124 (2020). doi: 10.1038/s41565-019-0602-z
|
[91] |
Lee, J. et al. Modulation of junction modes in SnSe2/MoTe2 broken-gap van der Waals heterostructure for multifunctional devices. Nano Lett. 20, 2370–2377 (2020). doi: 10.1021/acs.nanolett.9b04926
|
[92] |
Ye, L. et al. Near-infrared photodetector based on MoS2/black phosphorus heterojunction. ACS Photonics 3, 692–699 (2016). doi: 10.1021/acsphotonics.6b00079
|
[93] |
Li, H., Ye, L. & Xu, J. B. High-performance broadband floating-base bipolar phototransistor based on WSe2/BP/MoS2 heterostructure. ACS Photonics 4, 823–829 (2017). doi: 10.1021/acsphotonics.6b00778
|
[94] |
Bullock, J. et al. Polarization-resolved black phosphorus/molybdenum disulfide mid-wave infrared photodiodes with high detectivity at room temperature. Nat. Photonics 12, 601–607 (2018). doi: 10.1038/s41566-018-0239-8
|
[95] |
Yan, W. et al. Spectrally selective mid-wave infrared detection using fabry-pérot cavity enhanced black phosphorus 2D photodiodes. ACS Nano 14, 13645–13651 (2020). doi: 10.1021/acsnano.0c05751
|
[96] |
Yu, W. J. et al. Unusually efficient photocurrent extraction in monolayer van der Waals heterostructure by tunnelling through discretized barriers. Nat. Commun. 7, 13278 (2016). doi: 10.1038/ncomms13278
|
[97] |
Gao, A. Y. et al. Observation of ballistic avalanche phenomena in nanoscale vertical InSe/BP heterostructures. Nat. Nanotechnol. 14, 217–222 (2019). doi: 10.1038/s41565-018-0348-z
|
[98] |
Wang, X. M. et al. High-responsivity graphene/silicon-heterostructure waveguide photodetectors. Nat. Photonics 7, 888–891 (2013). doi: 10.1038/nphoton.2013.241
|
[99] |
Goykhman, I. et al. On-chip integrated, silicon–graphene plasmonic schottky photodetector with high responsivity and avalanche photogain. Nano Lett. 16, 3005–3013 (2016). doi: 10.1021/acs.nanolett.5b05216
|
[100] |
Massicotte, M. et al. Photo-thermionic effect in vertical graphene heterostructures. Nat. Commun. 7, 12174 (2016). doi: 10.1038/ncomms12174
|
[101] |
Li, L. F. et al. Plasmon excited ultrahot carriers and negative differential photoresponse in a vertical graphene van der Waals heterostructure. Nano Lett. 19, 3295–3304 (2019). doi: 10.1021/acs.nanolett.9b00908
|
[102] |
Jeong, H. et al. Metal–insulator–semiconductor diode consisting of two-dimensional nanomaterials. Nano Lett. 16, 1858–1862 (2016). doi: 10.1021/acs.nanolett.5b04936
|
[103] |
De Fazio, D. et al. Graphene-quantum dots hybrid photodetectors with low dark-current readout. ACS Nano 14, 11897–11905 (2020). doi: 10.1021/acsnano.0c04848
|
[104] |
Koester, S. J. & Li, M. Waveguide-coupled graphene optoelectronics. IEEE J. Sel. Top. Quantum Electron. 20, 6000211 (2014). doi: 10.1109/JSTQE.2013.2272316
|
[105] |
Romagnoli, M. et al. Graphene-based integrated photonics for next-generation datacom and telecom. Nat. Rev. Mater. 3, 392–414 (2018). doi: 10.1038/s41578-018-0040-9
|
[106] |
Ma, Z. Z. et al. Compact graphene plasmonic slot photodetector on silicon-on-insulator with high responsivity. ACS Photonics 7, 932–940 (2020). doi: 10.1021/acsphotonics.9b01452
|
[107] |
Pospischil, A. et al. CMOS-compatible graphene photodetector covering all optical communication bands. Nat. Photonics 7, 892–896 (2013). doi: 10.1038/nphoton.2013.240
|
[108] |
Ding, Y. H. et al. Ultra-compact integrated graphene plasmonic photodetector with bandwidth above 110 GHz. Nanophotonics 9, 317–325 (2020). doi: 10.1515/nanoph-2019-0167
|
[109] |
Gan, X. T. et al. Chip-integrated ultrafast graphene photodetector with high responsivity. Nat. Photonics 7, 883–887 (2013). doi: 10.1038/nphoton.2013.253
|
[110] |
Schall, D. et al. 50 GBit/s photodetectors based on wafer-scale graphene for integrated silicon photonic communication systems. ACS Photonics 1, 781–784 (2014). doi: 10.1021/ph5001605
|
[111] |
Gao, Y. et al. High-performance chemical vapor deposited graphene-on-silicon nitride waveguide photodetectors. Opt. Lett. 43, 1399–1402 (2018). doi: 10.1364/OL.43.001399
|
[112] |
Schuler, S. et al. Controlled generation of a p–n junction in a waveguide integrated graphene photodetector. Nano Lett. 16, 7107–7112 (2016). doi: 10.1021/acs.nanolett.6b03374
|
[113] |
Schuler, S. et al. Graphene photodetector integrated on a photonic crystal defect waveguide. ACS Photonics 5, 4758–4763 (2018). doi: 10.1021/acsphotonics.8b01128
|
[114] |
Muench, J. E. et al. Waveguide-integrated, plasmonic enhanced graphene photodetectors. Nano Lett. 19, 7632–7644 (2019). doi: 10.1021/acs.nanolett.9b02238
|
[115] |
Schuler, S. et al. High-responsivity graphene photodetectors integrated on silicon microring resonators. Preprint at https://arxiv.org/abs/2007.03044 (2020).
|
[116] |
Marconi, S. et al. Photo thermal effect graphene detector featuring 105 Gbit s−1 NRZ and 120 Gbit s−1 PAM4 direct detection. Nat. Commun. 12, 806 (2021). doi: 10.1038/s41467-021-21137-z
|
[117] |
Mišeikis, V. et al. Ultrafast, zero-bias, graphene photodetectors with polymeric gate dielectric on passive photonic waveguides. ACS Nano 14, 11190–11204 (2020). doi: 10.1021/acsnano.0c02738
|
[118] |
Schall, D. et al. Graphene photodetectors with a bandwidth > 76 GHz fabricated in a 6'' wafer process line. J. Phys. D: Appl. Phys. 50, 124004 (2017). doi: 10.1088/1361-6463/aa5c67
|
[119] |
Ma, P. et al. Plasmonically enhanced graphene photodetector featuring 100 Gbit/s data reception, high responsivity, and compact size. ACS Photonics 6, 154–161 (2019). doi: 10.1021/acsphotonics.8b01234
|
[120] |
Urich, A., Unterrainer, K. & Mueller, T. Intrinsic response time of graphene photodetectors. Nano Lett. 11, 2804–2808 (2011). doi: 10.1021/nl2011388
|
[121] |
Wang, Y. et al. Bound-states-in-continuum hybrid integration of 2D platinum diselenide on silicon nitride for high-speed photodetectors. ACS Photonics 7, 2643–2649 (2020). doi: 10.1021/acsphotonics.0c01233
|
[122] |
Li, T. T. et al. Spatially controlled electrostatic doping in graphene p-i-n junction for hybrid silicon photodiode. npj 2D Mater. Appl. 2, 36 (2018). doi: 10.1038/s41699-018-0080-4
|
[123] |
Gao, Y. et al. High-speed van der Waals heterostructure tunneling photodiodes integrated on silicon nitride waveguides. Optica 6, 514–517 (2019). doi: 10.1364/OPTICA.6.000514
|
[124] |
Goossens, S. et al. Broadband image sensor array based on graphene–CMOS integration. Nat. Photonics 11, 366–371 (2017). doi: 10.1038/nphoton.2017.75
|
[125] |
Mennel, L. et al. Ultrafast machine vision with 2D material neural network image sensors. Nature 579, 62–66 (2020). doi: 10.1038/s41586-020-2038-x
|
[126] |
Lien, M. B. et al. Ranging and light field imaging with transparent photodetectors. Nat. Photonics 14, 143–148 (2020). doi: 10.1038/s41566-019-0567-3
|
[127] |
Engel, M., Steiner, M. & Avouris, P. Black phosphorus photodetector for multispectral, high-resolution imaging. Nano Lett. 14, 6414–6417 (2014). doi: 10.1021/nl502928y
|
[128] |
Cakmakyapan, S. et al. Gold-patched graphene nano-stripes for high-responsivity and ultrafast photodetection from the visible to infrared regime. Light. : Sci. Appl. 7, 20 (2018). doi: 10.1038/s41377-018-0020-2
|
[129] |
Amani, M. et al. Mid-wave infrared photoconductors based on black phosphorus-arsenic alloys. ACS Nano 11, 11724–11731 (2017). doi: 10.1021/acsnano.7b07028
|
[130] |
Long, M. S. et al. Room temperature high-detectivity mid-infrared photodetectors based on black arsenic phosphorus. Sci. Adv. 3, e1700589 (2017). doi: 10.1126/sciadv.1700589
|
[131] |
Shen, C. F. et al. Tellurene photodetector with high gain and wide bandwidth. ACS Nano 14, 303–310 (2020). doi: 10.1021/acsnano.9b04507
|
[132] |
Chen, C. C. et al. Graphene-silicon schottky diodes. Nano Lett. 11, 5097 (2011). doi: 10.1021/nl203288r
|
[133] |
Selvi, H. et al. Graphene–silicon-on-insulator (GSOI) Schottky diode photodetectors. Nanoscale 10, 18926–18935 (2018). doi: 10.1039/C8NR05285A
|
[134] |
Chang, K. E. et al. Gate-controlled graphene-silicon schottky junction photodetector. Small 14, 1801182 (2018). doi: 10.1002/smll.201801182
|
[135] |
Wang, W. H. et al. High-performance position-sensitive detector based on graphene–silicon heterojunction. Optica 5, 27–31 (2018). doi: 10.1364/OPTICA.5.000027
|
[136] |
Casalino, M. et al. Vertically illuminated, resonant cavity enhanced, graphene–silicon schottky photodetectors. ACS Nano 11, 10955–10963 (2017). doi: 10.1021/acsnano.7b04792
|
[137] |
Selvi, H. et al. Towards substrate engineering of graphene–silicon Schottky diode photodetectors. Nanoscale 10, 3399–3409 (2018). doi: 10.1039/C7NR09591K
|
[138] |
Casalino, M. et al. Free-space schottky graphene/silicon photodetectors operating at 2 μm. ACS Photonics 5, 4577–4585 (2018). doi: 10.1021/acsphotonics.8b01037
|
[139] |
Mao, J. et al. Ultrafast, broadband photodetector based on MoSe2/silicon heterojunction with vertically standing layered structure using graphene as transparent electrode. Adv. Sci. 3, 1600018 (2016). doi: 10.1002/advs.201600018
|
[140] |
Jiang, W. et al. A versatile photodetector assisted by photovoltaic and bolometric effects. Light. : Sci. Appl. 9, 160 (2020). doi: 10.1038/s41377-020-00396-3
|
[141] |
Mueller, T., Xia, F. N. & Avouris, R. Graphene photodetectors for high-speed optical communications. Nat. Photonics 4, 297–301 (2010). doi: 10.1038/nphoton.2010.40
|
[142] |
Zhang, Y. Z. et al. Broadband high photoresponse from pure monolayer graphene photodetector. Nat. Commun. 4, 1811 (2013). doi: 10.1038/ncomms2830
|
[143] |
Xiong, X. et al. High performance black phosphorus electronic and photonic devices with HfLaO dielectric. IEEE Electron Device Lett. 39, 127–130 (2018). doi: 10.1109/LED.2017.2779877
|
[144] |
Liu, Y. et al. Highly responsive broadband black phosphorus photodetectors. Chin. Opt. Lett. 16, 020002 (2018). doi: 10.3788/COL201816.020002
|
[145] |
Verguts, K. et al. Controlling water intercalation is key to a direct graphene transfer. ACS Appl. Mater. Interfaces 9, 37484–37492 (2017). doi: 10.1021/acsami.7b12573
|
[146] |
Wang, B. et al. Support-free transfer of ultrasmooth graphene films facilitated by self-assembled monolayers for electronic devices and patterns. ACS Nano 10, 1404–1410 (2016). doi: 10.1021/acsnano.5b06842
|
[147] |
Chen, M. G. et al. Advances in transferring chemical vapour deposition graphene: a review. Mater. Horiz. 4, 1054–1063 (2017). doi: 10.1039/C7MH00485K
|
[148] |
Moon, J. Y. et al. Layer-engineered large-area exfoliation of graphene. Sci. Adv. 6, eabc6601 (2020). doi: 10.1126/sciadv.abc6601
|
[149] |
Schulman, D. S., Arnold, A. J. & Das, S. Contact engineering for 2D materials and devices. Chem. Soc. Rev. 47, 3037–3058 (2018). doi: 10.1039/C7CS00828G
|
[150] |
Konstantatos, G. Current status and technological prospect of photodetectors based on two-dimensional materials. Nat. Commun. 9, 5266 (2018). doi: 10.1038/s41467-018-07643-7
|
[151] |
Rogalski, A. Graphene-based materials in the infrared and terahertz detector families: a tutorial. Adv. Opt. Photonics 11, 314–379 (2019). doi: 10.1364/AOP.11.000314
|
[152] |
Lin, H. T. et al. Mid-infrared integrated photonics on silicon: a perspective. Nanophotonics 7, 393–420 (2017). doi: 10.1515/nanoph-2017-0085
|
[153] |
Seeds, A. J. et al. Terahertz photonics for wireless communications. J. Lightwave Technol. 33, 579–587 (2015). doi: 10.1109/JLT.2014.2355137
|
[154] |
Yan, S. Q. et al. 2D materials integrated with metallic nanostructures: fundamentals and optoelectronic applications. Nanophotonics 9, 1877–1900 (2020). doi: 10.1515/nanoph-2020-0074
|
[155] |
Liu, Y. et al. Van der Waals heterostructures and devices. Nat. Rev. Mater. 1, 16042 (2016). doi: 10.1038/natrevmats.2016.42
|
[156] |
Yuan, X. et al. Wafer-scale arrayed p-n junctions based on few-layer epitaxial GaTe. Nano Res. 8, 3332–3341 (2015). doi: 10.1007/s12274-015-0833-8
|
[157] |
Giambra, M. A. et al. Wafer-scale integration of graphene-based photonic devices. ACS Nano 15, 3171–3187 (2021). doi: 10.1021/acsnano.0c09758
|
[158] |
Liu, Y., Huang, Y. & Duan, X. F. Van der Waals integration before and beyond two-dimensional materials. Nature 567, 323–333 (2019). doi: 10.1038/s41586-019-1013-x
|
[159] |
Neumaier, D., Pindl, S. & Lemme, M. C. Integrating graphene into semiconductor fabrication lines. Nat. Mater. 18, 525–529 (2019). doi: 10.1038/s41563-019-0359-7
|
[160] |
Qu, Z. et al. Waveguide integrated graphene mid-infrared photodetector. In Proceedings of SPIE 10537, Silicon Photonics XIII. (SPIE, 2018). 105371N.
|
[161] |
Chen, C. et al. Three-dimensional integration of black phosphorus photodetector with silicon photonics and nanoplasmonics. Nano Lett. 17, 985–991 (2017). doi: 10.1021/acs.nanolett.6b04332
|
[162] |
Yuan, S. F. et al. Room temperature graphene mid-infrared bolometer with a broad operational wavelength range. ACS Photonics 5, 1206–1215 (2020). doi: 10.1021/acsphotonics.0c00028
|
[163] |
Xu, M. et al. Black phosphorus mid-infrared photodetectors. Appl. Phys. B 123, 130 (2017). doi: 10.1007/s00340-017-6698-7
|
[164] |
Yuan, S. F. et al. Air-stable room-temperature mid-infrared photodetectors based on hBN/black arsenic phosphorus/hBN heterostructures. Nano Lett. 18, 3172–3179 (2018). doi: 10.1021/acs.nanolett.8b00835
|
[165] |
Xiang, D. et al. Anomalous broadband spectrum photodetection in 2D rhenium disulfide transistor. Adv. Optical Mater. 7, 1901115 (2019). doi: 10.1002/adom.201901115
|
[166] |
Liu, C. H. et al. Graphene photodetectors with ultra-broadband and high responsivity at room temperature. Nat. Nanotechnol. 9, 273–278 (2014). doi: 10.1038/nnano.2014.31
|
[167] |
Kim, W. et al. Photoresponse of graphene-gated graphene-GaSe heterojunction devices. ACS Appl. Nano Mater. 1, 3895–3902 (2018). doi: 10.1021/acsanm.8b00684
|
[168] |
Liu, X. Z. et al. Infrared photodetector based on the photothermionic effect of graphene-nanowall/silicon heterojunction. ACS Appl. Mater. Interfaces 11, 17663–17669 (2019). doi: 10.1021/acsami.9b03329
|