Issue 3
Mar 2020
Turn off MathJax
Article Contents
Shi-hui Dong, Wang Ao-lei, Zhao Jin, Shi-jing Tan, Bing Wang. Interaction of CO and O$ _\textbf{2} $ with Supported Pt Single-Atoms on TiO$ _\textbf{2} $(110)[J]. JOURNAL OF MECHANICAL ENGINEERING, 2020, 33(3): 349-356. doi: 10.1063/1674-0068/cjcp1911198
Citation: Shi-hui Dong, Wang Ao-lei, Zhao Jin, Shi-jing Tan, Bing Wang. Interaction of CO and O$ _\textbf{2} $ with Supported Pt Single-Atoms on TiO$ _\textbf{2} $(110)[J]. JOURNAL OF MECHANICAL ENGINEERING, 2020, 33(3): 349-356. doi: 10.1063/1674-0068/cjcp1911198

Interaction of CO and O$ _\textbf{2} $ with Supported Pt Single-Atoms on TiO$ _\textbf{2} $(110)

doi: 10.1063/1674-0068/cjcp1911198
More Information
  • Corresponding author: Bing Wang, E-mail:bwang@ustc.edu.cn
  • Received Date: 11 Nov 2019
  • Accepted Date: 26 Dec 2019
  • Publish Date: 17 Mar 2020
  • In view of the high activity of Pt single atoms in the low-temperature oxidation of CO, we investigate the adsorption behavior of Pt single atoms on reduced rutile TiO$ _2 $(110) surface and their interaction with CO and O$ _2 $ molecules using scanning tunneling microscopy and density function theory calculations. Pt single atoms were prepared on the TiO$ _2 $(110) surface at 80 K, showing their preferred adsorption sites at the oxygen vacancies. We characterized the adsorption configurations of CO and O$ _2 $ molecules separately to the TiO$ _2 $-supported Pt single atom samples at 80 K. It is found that the Pt single atoms tend to capture one CO to form Pt-CO complexes, with the CO molecule bonding to the fivefold coordinated Ti (Ti$ _{5 \rm{c}} $) atom at the next nearest neighbor site. After annealing the sample from 80 K to 100 K, CO molecules may diffuse, forming another type of complexes, Pt-(CO)$ _2 $. For O$ _2 $ adsorption, each Pt single atom may also capture one O$ _2 $ molecule, forming Pt-O$ _2 $ complexes with O$ _2 $ molecule bonding to either the nearest or the next nearest neighboring Ti$ _{5 \rm{c}} $ sites. Our study provides the single-molecule-level knowledge of the interaction of CO and O$ _2 $ with Pt single atoms, which represent the important initial states of the reaction between CO and O$ _2 $.

     

  • loading
  • [1]
    T. Engel and G. Ertl, J. Chem. Phys. 69 1267 (1978). doi: 10.1063/1.436666
    [2]
    H. J. Freund, G. Meijer, M. Scheffler, R. Schlögl, and M. Wolf, Angew. Chem. Int. Ed. 50 10064 (2011). doi: 10.1002/anie.201101378
    [3]
    M. M. Schubert, S. Hackenberg, A. C. van Veen, M. Muhler, V. Plzak, and R. J. Behm, J. Catal. 197 113 (2001). doi: 10.1006/jcat.2000.3069
    [4]
    S. H. Overbury, L. Ortiz-Soto, H. G. Zhu, B. Lee, M. D. Amiridis, and S. Dai, Catal. Lett. 95 99 (2004). doi: 10.1023/B:CATL.0000027281.96719.42
    [5]
    L. Delannoy, N. El Hassan, A. Musi, N. N. Le To, J. M. Krafft, and C. Louis, J. Phys. Chem. B 110 22471 (2006). doi: 10.1021/jp062130l
    [6]
    M. S. Chen and D. W. Goodman, Science 306 252 (2004). doi: 10.1126/science.1102420
    [7]
    Q. Fu, H. Saltsburg, and M. Flytzani-Stephanopoulos. Science. 301 935 (2003). doi: 10.1126/science.1085721
    [8]
    B. Yoon, H. Häkkinen, U. Landman, A. S. Wörz, J. M. Antonietti, S. Abbet, K. Judai, and U. Heiz, Science 307 403 (2005). doi: 10.1126/science.1104168
    [9]
    C. Y. Peng and H. Bernhard Schlegel, Israel. J. Chem. 33 449 (1993). doi: 10.1002/ijch.199300051
    [10]
    Z. Y. Li, Z. Yuan, X. N. Li, Y. X. Zhao, and S. G. He, J. Am. Chem. Soc. 136 14307 (2014). doi: 10.1021/ja508547z
    [11]
    W. L. Zhang, L. R. Lou, W. Zhu, and G. Z. Wang, Chin. J. Chem. Phys. 32 521 (2019). doi: 10.1063/1674-0068/cjcp1904069
    [12]
    T. Chen, G. P. Wu, Z. C. Feng, J. Y. Shi, G. J. Ma, P. L. Ying, and C. Li, Chin. J. Chem. Phys. 20 483 (2007). doi: 10.1088/1674-0068/20/04/483-488
    [13]
    P. Yu, Y. F. Song, Q. H. Yuan, L. L. Wang, J. M. Li, and N. Y. Qiu. Chin. J. Chem. Phys. 18 573 (2005).
    [14]
    M. Yang and H. Papp, Chin. J. Chem. Phys. 20 690 (2007). doi: 10.1088/1674-0068/20/06/690-696
    [15]
    S. H. Zhong, X. T. Wang, and Y. F. Geng, Chin. J. Chem. Phys. 17 91 (2004).
    [16]
    A. M. Gao, H. J. Wang, J. Tu, and Q. X. Li, Chin. J. Chem. Phys. 19 555 (2006). doi: 10.1360/cjcp2006.19(6).555.4
    [17]
    M. Haruta, T. Kobayashi, H. Sano, and N. Yamada, Chem. Lett. 16 405 (1987). doi: 10.1246/cl.1987.405
    [18]
    M. Haruta, N. Yamada, T. Kobayashi, and S. Iijima, J. Catal. 155 301 (1989).
    [19]
    I. X. Green, W. J. Tang, M. Neurock, and J. T. Yates, J. T. Yates Jr., Science 333 736 (2011).
    [20]
    N. Li, Q. Y. Chen, L. F. Luo, W. X. Huang, M. F. Luo, G. S. Hu, and J. Q. Lu, Appl. Catal. B-Environ. 142/143 523 (2013). doi: 10.1016/j.apcatb.2013.05.068
    [21]
    Y. Zhou, D. E. Doronkin, M. L. Chen, S. Q. Wei, and J. D. Grunwaldt, ACS Catal. 6 7799 (2016). doi: 10.1021/acscatal.6b01509
    [22]
    K. Czupryn, I. Kocemba, and J. Rynkowski, React. Kinet. Mech. Cat. 124 187 (2018). doi: 10.1007/s11144-017-1334-4
    [23]
    Y. P. G. Chua, G. T. K. K. Gunasooriya, M. Saeys, and E. G. Seebauer, J. Catal. 311 306 (2014). doi: 10.1016/j.jcat.2013.12.007
    [24]
    K. Taira, K. Nakao, K. Suzuki, and H. Einaga, Environ. Sci. Technol. 50 9773 (2016). doi: 10.1021/acs.est.6b01652
    [25]
    L. DeRita, S. Dai, K. Lopez-Zepeda, N. Pham, G. W. Graham, X. Q. Pan, and P. Christopher, J. Am. Chem. Soc. 139 14150 (2017). doi: 10.1021/jacs.7b07093
    [26]
    B. T. Qiao, A. Q. Wang, X. F. Yang, L. F. Allard, Z. Jiang, Y. T. Cui, J. Y. Liu, J. Li, and T. Zhang, Nat. Chem. 3 634 (2011). doi: 10.1038/nchem.1095
    [27]
    R. Van Hardeveld and F. Hartog, Surf. Sci. 15 189 (1969).
    [28]
    N. Lopez, T. V. W. Janssens, B. S. Clausen, Y. Xu, M. Mavrikakis, T. Bligaard, and J. K. NØrskov, J. Catal. 223 232 (2004).
    [29]
    C. T. Campbell, Nat. Chem. 4 597 (2012). doi: 10.1038/nchem.1412
    [30]
    X. F. Yang, A. Q. Wang, B. T. Qiao, J. Li, J. Y. Liu, and T. Zhang, Accounts. Chem. Res. 46 1740 (2013). doi: 10.1021/ar300361m
    [31]
    A. Q. Wang, J. Li, and T. Zhang, Nat. Rev. Chem. 2 65 (2018).
    [32]
    Y. J. Chen, S. F. Ji, C. Chen, Q. Peng, D. S. Wang, and Y. D. Li, Joule 2 1242 (2018). doi: 10.1016/j.joule.2018.06.019
    [33]
    H. B. Zhang, G. G. Liu, L. Shi, and J. H. Ye, Adv. Energy Mater. 8 1701343 (2018). doi: 10.1002/aenm.201701343
    [34]
    F. Rieboldt, L. B. Vilhelmsen, S. Koust, J. V. Lauritsen, S. Helveg, L. Lammich, F. Besenbacher, B. Hammer, and S. Wendt, J. Chem. Phys. 141 214702 (2014). doi: 10.1063/1.4902249
    [35]
    H. V. Thang, G. Pacchioni, L. DeRita, and P. Christopher, J. Catal. 367 104 (2018). doi: 10.1016/j.jcat.2018.08.025
    [36]
    Y. Shiraishi, N. Yasumoto, J. Imai, H. Sakamoto, S. Tanaka, S. Ichikawa, B. Ohtani, and T. Hirai, Nanoscale 9 8349 (2017). doi: 10.1039/C7NR02310C
    [37]
    H. Q. Tang, Y. Lin, Z. W. Cheng, X. F. Cui, and B. Wang, Chin. J. Chem. Phys. 31 71 (2018). doi: 10.1063/1674-0068/31/cjcp1705103
    [38]
    Y. Zhao, Z. Wang, X. F. Cui, T. Huang, B. Wang, Y. Luo, J. L. Yang, and J. G. Hou, J. Am. Chem. Soc. 131 7958 (2009). doi: 10.1021/ja902259k
    [39]
    Z. Wang, Y. Zhao, X. F. Cui, S. J. Tan, A. D. Zhao, B. Wang, J. L. Yang, and J. G. Hou, J. Phys. Chem. C 114 18222 (2010). doi: 10.1021/jp1059165
    [40]
    S. J. Tan, Y. F. Ji, Y. Zhao, A. D. Zhao, B. Wang, J. L. Yang, and J. G. Hou, J. Am. Chem. Soc. 133 2002 (2011). doi: 10.1021/ja110375n
    [41]
    L. N. Cao, W. Liu, Q. Q. Luo, R. T. Yin, B. Wang, J. Weissenrieder, M. Soldemo, H. Yan, Y. Lin, Z. H. Sun, C. Ma, W. H. Zhang, S. Chen, H. W. Wang, Q. Q. Guan, T. Yao, S. Q. Wei, J. L. Yang, and J. L. Lu, Nature 565 631 (2019). doi: 10.1038/s41586-018-0869-5
    [42]
    X. Zhou, Q. Shen, K. D. Yuan, W. S. Yang, Q. W. Chen, Z. H. Geng, J. L. Zhang, X. Shao, W. Chen, G. Q. Xu, X. M. Yang, and K. Wu, J. Am. Chem. Soc. 140 554 (2018). doi: 10.1021/jacs.7b10394
    [43]
    S. H. Dong, B. Li, X. F. Cui, S. J. Tan, and B. Wang, J. Phys. Chem. Lett. 10 4683 (2019). doi: 10.1021/acs.jpclett.9b01527
    [44]
    X. F. Cui, Z. Wang, S. J. Tan, B. Wang, J. L. Yang, and J. G. Hou, J. Phys. Chem. C 113 13204 (2009). doi: 10.1021/jp901657u
    [45]
    G. Kresse and J. Hafner, Phys. Rev. B 47 558 (1993). doi: 10.1103/PhysRevB.47.558
    [46]
    G. Kresse and J. Hafner, Phys. Rev. B 48 13115 (1993). doi: 10.1103/PhysRevB.48.13115
    [47]
    G. Kresse and J. Hafner, Phys. Rev. B 49 14251 (1994). doi: 10.1103/PhysRevB.49.14251
    [48]
    P. E. Blöchl, Phys. Rev. B 50 17953 (1994). doi: 10.1103/PhysRevB.50.17953
    [49]
    J. P. Perdew, K. Burke, and M. Ernzerhof, Phys. Rev. Lett. 77 3865 (1996). doi: 10.1103/PhysRevLett.77.3865
    [50]
    S. Grimme, J. Comput. Chem. 27 1787 (2006).
    [51]
    S. L. Dudarev, G. A. Botton, S. Y. Savrasov, C. J. Humphreys, and A. P. Sutton, Phys. Rev. B 57 1505 (1998). doi: 10.1103/PhysRevB.57.1505
    [52]
    U. Diebold, Appl. Phys. A 76 681 (2003). doi: 10.1007/s00339-002-2004-5
    [53]
    M. A. Henderson, Surf. Sci. Rep. 66 185 (2011). doi: 10.1016/j.surfrep.2011.01.001
    [54]
    M. A. Henderson and I. Lyubinetsky, Chem. Rev. 113 4428 (2013). doi: 10.1021/cr300315m
    [55]
    A. D. Zhao, S. J. Tan, B. Li, B. Wang, J. L. Yang, and J. G. Hou, Phys. Chem. Chem. Phys. 15 12428 (2013). doi: 10.1039/c3cp51446c
    [56]
    H. Iddir, V. Skavysh, S. Öǧüt, N. D. Browning, and M. M. Disko, Phys. Rev. B. 73, 041403 (2006).
    [57]
    V. Çelik, H. Ünal, E. Mete, and Ș. Ellialtioǧlu, Phys. Rev. B 82 205113 (2010). doi: 10.1103/PhysRevB.82.205113
    [58]
    T. Y. Chang, Y. Tanaka, R. Ishikawa, K. Toyoura, K. Matsunaga, Y. Ikuhara, and N. Shibata, Nano Lett. 14 134 (2014). doi: 10.1021/nl403520c
  • 加载中

Catalog

    Figures(5)

    Article Metrics

    Article views(136) PDF downloads(2) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return