Issue 6
Dec 2017
Turn off MathJax
Article Contents
Zhao Huiling, Sun Jiao, Xuan Ruixiang, Chen Wenyi. Experimental study of coherent structures in a solid-liquid turbulent boundary layer[J]. JOURNAL OF MECHANICAL ENGINEERING, 2017, 31(6): 29-36. doi: 10.11729/syltlx20160199
Citation: Zhao Huiling, Sun Jiao, Xuan Ruixiang, Chen Wenyi. Experimental study of coherent structures in a solid-liquid turbulent boundary layer[J]. JOURNAL OF MECHANICAL ENGINEERING, 2017, 31(6): 29-36. doi: 10.11729/syltlx20160199

Experimental study of coherent structures in a solid-liquid turbulent boundary layer

doi: 10.11729/syltlx20160199
  • Received Date: 23 Dec 2016
  • Rev Recd Date: 04 May 2017
  • Solid-liquid turbulent flows are common in industrial and engineering processes.Study of the interactions between particles as well as turbulence and turbulence modulation is extremely significant, which can play an guidance role in practical engineering application for heat and/or mass transfer in chemical processes.Coherent structure in the turbulent boundary layer of particle-laden flows is experimentally investigated using Particle Image Velocimetry (PIV). Study of the change of the mean velocity profile and the turbulent intensity in the horizontal turbulent boundary layer of water and with polythene is conducted, which is used as the dispersed phase.Based on the concept of multi-scale spatial locally averaged structure function, conditional sampling and phase average methods are employed to extract and analyze the spatial topologies of the streamwise and normal fluctuating velocities, spanwise vorticity, Reynolds shear stress of the ejection and sweep events.The results show that the buffer layer of the turbulent boundary layer has thinning tendency and logarithmic layer down-shift, the turbulence intensity and the Reynolds stress are also enhanced due to the existence of particles.The amplitude of longitudinal and vertical fluctuating velocity components, as well as that of the spanwise vorticity and Reynolds shear stress can be manipulated obviously both in ejection and sweeping events, all parameters were increased. It imply that the turbulence intensity in the near-wall region in the two burst events increase, and the momentum and energy transport strengthen for the exist of particle in the experiment.

     

  • loading
  • [1]
    岳湘安.液-固两相流基础[M].北京:石油工业出版社, 1996.
    [2]
    Smith C R, Walker J D A, Haidari A H, et al. On the dynamics of near-wall turbulence[J]. Philosophical Transactions of the Royal Society B Biological Sciences, 1991, 336(1641):131-175. doi: 10.1098/rsta.1991.0070
    [3]
    Gore R A, Crowe C T. Effect of particle size on modulating turbulent intensity[J]. International Journal of Multiphase Flow, 1989, 15(2):279-285. doi: 10.1016/0301-9322(89)90076-1
    [4]
    Rashidi M, Hetsroni G, Banerjee S. Particle-turbulence interaction in a boundary layer[J]. International Journal of Multiphase Flow, 1990, 16(6):935-949. doi: 10.1016/0301-9322(90)90099-5
    [5]
    Kaftori D, Hetsroni G, Banerjee S. The effect of particles on wall turbulence[J]. International Journal of Multiphase Flow, 1998, 24(3):359-386. doi: 10.1016/S0301-9322(97)00054-2
    [6]
    Kulick J D, Fessler J R, Eaton J K. Particle response and turbulence modification in fully developed channel flow[J]. Journal of Fluid Mechanics, 1994, 277:109-134. doi: 10.1017/S0022112094002703
    [7]
    Sato Y, Hishida K. Transport process of turbulence energy in particle-laden turbulent flow[J]. International Journal of Heat & Fluid Flow, 1996, 17(3):202-210. https://www.sciencedirect.com/science/article/pii/0142727X96000355
    [8]
    Li J, Wang H, Liu Z, et al. An experimental study on turbulence modification in the near-wall boundary layer of a dilute gas-particle channel flow[J]. Experiments in Fluids, 2012, 53(5):1385-1403. doi: 10.1007/s00348-012-1364-7
    [9]
    Tanière A, Oesterlé B, Monnier J C. On the behaviour of solid particles in a horizontal boundary layer with turbulence and saltation effects[J]. Experiments in Fluids, 1997, 23(6):463-471. doi: 10.1007/s003480050136
    [10]
    Kiger K T, Pan C. Suspension and turbulence modification effects of solid particulates on a horizontal turbulent channel flow[J]. Journal of Turbulence, 2002, 3(10):27-29. http://adsabs.harvard.edu/abs/2002JTurb...3...19K
    [11]
    郭福水, 王汉封, 柳朝晖, 等.水平槽道内湍流变动的PTV实验研究[J].工程热物理学报, 2004, 25(4):622-624. http://d.wanfangdata.com.cn/Periodical/gcrwlxb200404025

    Guo F S, Wang H F, Liu Z H, et al. Experimental investigations on turbulence modulation in a horizontal channel flow using PTV[J]. Journal of Engineering Thermophysics, 2004, 25(4):622-624. http://d.wanfangdata.com.cn/Periodical/gcrwlxb200404025
    [12]
    余钊圣, 王宇, 邵雪明, 等.中性悬浮大颗粒对湍槽流影响的数值研究[J].浙江大学学报(工学版), 2013, 47(1):109-115. http://cpfd.cnki.com.cn/Article/CPFDTOTAL-AGLU201211007040.htm

    Yu Z S, Wang Y, Shao X M, et al. Numerical studies on effects of neutrally buoyant large particles on turbulent channel flow[J]. Journal of Zhejiang University (Engineering Science), 2013, 47(1):109-115. http://cpfd.cnki.com.cn/Article/CPFDTOTAL-AGLU201211007040.htm
    [13]
    Pan Y, Banerjee S. Numerical simulation of particle interactions with wall turbulence[J]. Physics of Fluids (1994-present), 1996, 8(8):2733-2755. doi: 10.1063/1.869059
    [14]
    Pan Y, Banerjee S. Numerical investigation of the effects of large particles on wall-turbulence[J]. Physics of Fluids, 1997, 9(12):3786-3807. doi: 10.1063/1.869514
    [15]
    Crowe C T, Gore R A, Troutt T R. Particle dispersion by coherent structures in free shear flows[J]. Particulate Science & Technology, 1985, 3(3):149-158. doi: 10.1080/02726358508906434
    [16]
    Vinkovic I, Doppler D, Lelouvetel J, et al. Direct numerical simulation of particle interaction with ejections in turbulent channel flows[J]. International Journal of Multiphase Flow, 2011, 37(2):187-197. doi: 10.1016/j.ijmultiphaseflow.2010.09.008
    [17]
    Pang M J, Wei J J, Yu B. Numerical investigation of phase distribution and liquid turbulence modulation in dilute particle-laden flow[J]. Particulate Science & Technology, 2011, 29(6):554-576. doi: 10.1080/02726351.2010.536304?scroll=top
    [18]
    姜楠, 管新蕾, 于培宁.雷诺应力各向异性涡黏模型的层析TRPIV测量[J].力学学报, 2012, 44(2):1037-1042. http://www.cqvip.com/QK/91029X/201202/41251573.html

    Jiang N, Guan X L, Yu P N. Tomographic TRPIV measurement of anisotropic eddy-viscosity model for coherent structure Reynolds Stress[J]. Chinese Journal of Theoretical and Applied Mechanics, 2012, 44(2):1037-1042. http://www.cqvip.com/QK/91029X/201202/41251573.html
    [19]
    Yang S Q, Nan J. Tomographic TR-PIV measurement of coherent structure spatial topology utilizing an improved quadrant splitting method[J]. Science China Physics, Mechanics & Astronomy, 2012, 55(10):1863-1872. doi: 10.1007/s11433-012-4887-2
    [20]
    姜楠, 于培宁, 管新蕾.湍流边界层相干结构空间拓扑形态的层析TRPIV测量[J].航空动力学报, 2012, 27(5):1113-1121. http://d.wanfangdata.com.cn/Periodical/hkdlxb201205023

    Jiang N, Yu P N, Guan X L. Tomo-TRPIV measurement of coherent structure spatial topology in turbulent boundary layer[J]. Journal of Aerospace Power, 2012, 27(5):1113-1121. http://d.wanfangdata.com.cn/Periodical/hkdlxb201205023
  • 加载中

Catalog

    Figures(5)

    Article Metrics

    Article views(161) PDF downloads(0) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return