Issue 6
Dec 2017
Turn off MathJax
Article Contents
Zhang Jun, Bai Yaqiang, Zhai Shucheng, Zhang Guoping, Xu Lianghao. PIV measurement on streamwise vortex generated by undulating fins[J]. JOURNAL OF MECHANICAL ENGINEERING, 2017, 31(6): 15-21. doi: 10.11729/syltlx20170017
Citation: Zhang Jun, Bai Yaqiang, Zhai Shucheng, Zhang Guoping, Xu Lianghao. PIV measurement on streamwise vortex generated by undulating fins[J]. JOURNAL OF MECHANICAL ENGINEERING, 2017, 31(6): 15-21. doi: 10.11729/syltlx20170017

PIV measurement on streamwise vortex generated by undulating fins

doi: 10.11729/syltlx20170017
  • Received Date: 25 Jan 2017
  • Rev Recd Date: 18 Aug 2017
  • The Gymnarchus Niloticus Fish (GNF) with long undulating fins generally cruises with high efficiency and extra-ordinal maneuverability while keeping its body for straight line. The flow field around andulating fins are measured by phase-locked PIV in the stationary water. Four cross sections including front part, middle part, after-body and wake flow are measured, respectively. Eight equal spaced phases are measured at each cross section, and one hundred instantaneous velocity fields are phase-averaged analyzed to extract the characteristics of vortex structure at each phase. The results indicate in cross sections the streamline vortexes are periodically generated near the fin tip as the fin swings to nearby maximum angle, and shed from the tip of the fin surface, There are two streamwise vortexes generated during each period at the two side maximum angle. On the other hand, as fin swings to the near mid-sagittal plane in the cross section, the fully developed streamwise vortexes begin to decay, and finally disappear. Meanwhile a high speed jet is generated in the direction from the root to the tip of the fin. Comparing the flow structure in the forepart, middle part and posterior cross sections, it is obvious that the streamwise vortex structure and its evolution with phases are similar in these three sections. From the forepart to the posterior along the shaft axis, the flow structure becomes more and more complicated as waves spread downstream, the jet ejected outward from the fin tip becomes stronger, and its sphene of influence seems enlarged. But the flow structure in the wake is different from the above three cross sections, which is less changed with the wave phases. The two large streamwise vortexes are formed under the fin surface, and stably and symmetrically locate on two sides of the mid-sagittal plane with opposite rotation directions.

     

  • loading
  • [1]
    王光明, 胡天江, 李非, 等.长背鳍波动推进游动研究[J].机械工程学报, 2006, 42(3):88-92. http://d.wanfangdata.com.cn/Periodical/jxgcxb200603015

    Wang G M, Hu T J, Li F, et al. Research on swimming by undulatory long dorsal fin propulsion[J]. Chinese Journal of Mechanical Engineering, 2006, 42(3):88-92. http://d.wanfangdata.com.cn/Periodical/jxgcxb200603015
    [2]
    徐海军, 潘存云, 张代兵, 等.不同水下仿生推进器性能影响的比较[J].机械设计与研究, 2010, 26(1):93-96. http://d.wanfangdata.com.cn/Periodical/jxsjyyj201001021

    Xu H J, Pan C Y, Zhang D B, et al. Comparative study on the propulsive performance of underwater bionic thrusters with different transmission methods[J]. Machine Design and Research, 2010, 26(1):93-96. http://d.wanfangdata.com.cn/Periodical/jxsjyyj201001021
    [3]
    王扬威, 王振龙, 李健, 等.形状记忆合金驱动仿生蝠鲼机器鱼的设计[J].机器人, 2010, 32(2):256-261. http://www.cnki.com.cn/Article/CJFDTOTAL-JQRR201002018.htm

    Wang Y W, Wang Z L, Li J, et al. Development of a biomimetic manta ray robot fish actuated by shape memory alloy[J]. Robot, 2010, 32(2):256-261. http://www.cnki.com.cn/Article/CJFDTOTAL-JQRR201002018.htm
    [4]
    MacIver M A, Fontaine E, Burdick J W. Designing future underwater vehicles:principles and mechanisms of the weakly electric fish[J]. IEEE Journal of Oceanic Engineering, 2004, 39(3):651-659. http://citeseerx.ist.psu.edu/viewdoc/bookmark?doi=10.1.1.116.1197&site=connotea
    [5]
    Willy A, Low K H. Initial experimental investigation of undulating fin[C]. The IEEE International Conference on Intelligent Robots and Systems, Edmonton, Canada, 2005. http://ieeexplore.ieee.org/document/1545280/
    [6]
    Low K H. Mechatronics and buoyancy implementation of robotic fish with modular fin mechanisms[J]. Proceedings of the Institution of Mechanical Engineers, Part Ⅰ:Journal of Systems and Contol Engineering, 2007, 221(3):295-309. https://www.researchgate.net/publication/238185971_Mechatronics_and_buoyancy_implementation_of_robotic_fish_swimming_with_modular_fin_mechanisms
    [7]
    Shirgaonkar A A, Curet O M, Patankar N A, et al. The hydrodynamics of ribbon-fin propulsion during impulsive motion[J]. J Expt Biol, 2008, 211:3490-3503. doi: 10.1242/jeb.019224
    [8]
    Rahman M M, Toda Y, Miki H. Study on the performance of the undulating side with various aspect ratios using computed flow, pressure field and hydrodynamic forces[C]//Proc of the 5th Asia-Pasific Workshop on Marine Hydr, Osaka, Japan, 2010.
    [9]
    Rahman M M, Toda Y. Miki H. Computational study on the fish-like underwater robot with two undulating side fins for various aspect ratios, fin angles and frequencies[C]. The International Conference on Marine Technology, BUET, Dhaka, Bangladesh, 2010.
    [10]
    Rahman M M, Sugimori S, Mike H, et al. Braking performance of a biomimetic squid-like underwater robot[J]. Journal of Bionic Engineering, 2013, 10:265-273. doi: 10.1016/S1672-6529(13)60222-X
    [11]
    王兆立, 苏玉民, 杨亮.黏性流场中鱼类胸鳍的水动力性能分析[J].水动力学研究与进展:A辑, 2009, 24(2):141-149. http://www.cqvip.com/QK/94099X/200902/30284051.html

    Wang Z L, Su Y M, Yang L. Hydrodynamic analysis of the pectoral-fin in viscous flows[J]. Chinese Journal of Hydrodynamics:Ser A, 2009, 24(2):141-149. http://www.cqvip.com/QK/94099X/200902/30284051.html
    [12]
    徐晓锋, 万德成.金枪鱼自主波动游动的数值模拟[J].水动力学研究与进展:A辑, 2011, 26(2):228-238. http://www.wenkuxiazai.com/doc/96be23f6f61fb7360b4c6579-2.html

    Xu X F, Wan D C. Numerical simulation of tuna undulatory swimming[J]. Chinese Journal of Hydrodynamics:Ser A, 2011, 26(2):228-238. http://www.wenkuxiazai.com/doc/96be23f6f61fb7360b4c6579-2.html
    [13]
    老轶佳, 王志东, 张振山, 等.摆动柔性鳍尾涡流场的实验测试与分析[J].水动力学研究与进展:A辑, 2009, 24(1):107-112. http://d.wanfangdata.com.cn/Periodical/sdlxyjyjz200901016

    Lao Y J, Wang Z D, Zhang Z S, et al. Experimental measurement and analysis on the wake vortex of oscillating flexible caudal fin[J]. Chinese Journal of Hydrodynamics:Ser A, 2009, 24(1):107-112. http://d.wanfangdata.com.cn/Periodical/sdlxyjyjz200901016
    [14]
    王光明. 仿鱼柔性长鳍波动推进理论与实验研究[D]. 长沙: 国防科学技术大学, 2007. http://cdmd.cnki.com.cn/Article/CDMD-90002-2008098436.htm

    Wang G M. Theoretic and experimental research on propulsion by bionic undulatory fin[D]. Changsha:National University of Defense Technology, 2007. http://cdmd.cnki.com.cn/Article/CDMD-90002-2008098436.htm
    [15]
    刘芳芳. 基于柔性鳍波动的水下仿生系统推进性能研究[D]. 杭州: 浙江大学, 2012. http://cdmd.cnki.com.cn/Article/CDMD-10335-1012321274.htm

    Wang F F. Research on flexible undulating fin based biomimetic system underwater and its propulsion[D]. Hangzhou:Zhejiang University, 2012. http://cdmd.cnki.com.cn/Article/CDMD-10335-1012321274.htm
    [16]
    张国平, 张军, 翟树成. 长鳍扭波推进PIV试验初步研究[R]. 江苏无锡: 中国船舶科学研究中心, 2011.
  • 加载中

Catalog

    Figures(8)

    Article Metrics

    Article views(174) PDF downloads(0) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return