Issue 6
Dec 2017
Turn off MathJax
Article Contents
Ji Chen, Zhao Ling, Zhu Jian, Liu Ziqiang, Li Feng. Hypersonic wind tunnel flutter test research on rudder models by continuously varying dynamic pressure[J]. JOURNAL OF MECHANICAL ENGINEERING, 2017, 31(6): 37-44. doi: 10.11729/syltlx20170088
Citation: Ji Chen, Zhao Ling, Zhu Jian, Liu Ziqiang, Li Feng. Hypersonic wind tunnel flutter test research on rudder models by continuously varying dynamic pressure[J]. JOURNAL OF MECHANICAL ENGINEERING, 2017, 31(6): 37-44. doi: 10.11729/syltlx20170088

Hypersonic wind tunnel flutter test research on rudder models by continuously varying dynamic pressure

doi: 10.11729/syltlx20170088
  • Received Date: 03 Jul 2017
  • Rev Recd Date: 31 Aug 2017
  • In order to study the hypersonic flutter behavior of rudder models, a hypersonic wind tunnel flutter test technique by continuously varying dynamic pressure was developed and experimentally studied in China Academy of Aerospace Aerodynamics. The models with the same structural and aerodynamic design were tested at Mach number 4.95 and 5.95. The flutter critical parameters were obtained by slowly increasing the dynamic pressure until flutter onset. The short-time-fourier-transform time-frequency domain analysis method was used to study the frequency coupling characteristics. The analysis shows that it is the classic flutter that the bending and torsion mode couples as the dynamic pressure increases. Based on the structural dynamic parameter identification method, the damping ratio extrapolation method and the flutter margin method were used to predict the flutter critical parameters with the subcritical data. Both methods show a good prediction accuracy. The results also indicate that the rate of increase of dynamic pressure has small effect on the prediction of the flutter boundary. The temperature field measurements show that the maximum temperature of the model appears at the leading edge of the wing root. The temperatures of the leading edge and the rear part of the slope of the rudder are also relatively high. The temperature of the leading edge of the rudder shaft exposed to the flow field is not high, which might be due to the influence of the reflector surface boundary layer.

     

  • loading
  • [1]
    Garrick I E, Cunningham H J. Problems and developments inaerothermoelasticity[C]//Proceeding of Symposium on Aerothermoelasticity, ASD-TR-61-645, 1962.
    [2]
    Doggett R V Jr. An observation on the pictorial representation of aeroservothermoelasticity[R]. NASA-TM-104058, 1991.
    [3]
    Terry M H. Aeroelasticity research at wright-patterson air force base (Wright Field) from 1953-1993[J]. Journal of Aircraft, 2003, 40(5):813-819. doi: 10.2514/2.6872
    [4]
    Frederick W G. Flutter investigation of models having the planform of the northamerican X-15 airplane wing over a range of Mach number from 0.56 to 7.3[R]. NASA-TM-X-460, 1961.
    [5]
    Homer G M, Robert W M. Flutter tests of some simple models at a Mach number of 7.2 in helium flow[R]. NASA MEMO 4-8-59L, 1959. http://www.researchgate.net/publication/23912163_Flutter_Tests_of_Some_Simple_Models_at_a_Mach_Number_of_7.2_in_Helium_Flow
    [6]
    Robert C G. Effects of leading-edge bluntness on flutter characteristics of some square-planform double-wedge airfoils at a Mach number of 15.4[R]. NASA-TN-D-1487, 1962.
    [7]
    Robert C G. Effects of leading-edge sweep on flutter characteristics of some delta-planform surfaces at a Mach number of 15.4[R]. NASA-TN-D-2360, 1964.
    [8]
    冯明溪, 白葵. 舵面颤振试验[C]//第五届全国流体弹性力学学术会议论文集. 1996.

    Feng M X, Bai K. Rudder flutter test[C]//Proceedings of the 5th National Symposium on Aeroelasticity. 1996.
    [9]
    白葵, 冯明溪, 付光明. 超音速有迎角舵面颤振实验[C]//第七届全国空气弹性学术交流会论文集, 2001. http://cpfd.cnki.com.cn/Article/CPFDTOTAL-ZGKQ200110003006.htm

    Bai K, Feng M X, Fu G M. Experimental study of rudder flutter with angle of attack at supersonic speed[C]//Proceedings of the 7th National Symposium on Aeroelasticity, 2001. http://cpfd.cnki.com.cn/Article/CPFDTOTAL-ZGKQ200110003006.htm
    [10]
    杨炳渊, 宋伟力.舵模型风洞颤振试验中亚临界技术的应用研究[J].上海航天, 2003, 20(2):18-21. http://cpfd.cnki.com.cn/Article/CPFDTOTAL-ZGKQ200110003005.htm

    Yang B Y, Song W L. Application of subcritical technology in wind tunnel flutter experiment for rudder model[J]. Aerospace Shanghai, 2003, 20(2):18-21. http://cpfd.cnki.com.cn/Article/CPFDTOTAL-ZGKQ200110003005.htm
    [11]
    冉景洪, 季辰, 刘子强, 等.跨声速风洞颤振试验模型激振与数据处理方法研究[J].实验流体力学, 2009, 23(4):87-91, 97. http://www.syltlx.com/CN/abstract/abstract9767.shtml

    Ran J H, Ji C, Liu Z Q, et al. Research of data process methods and model excitation for transonic flutter experiments in wind tunnel[J]. J Exp Fluid Mech, 2009, 23(4):87-91, 97. http://www.syltlx.com/CN/abstract/abstract9767.shtml
    [12]
    季辰, 冉景洪, 刘子强.亚跨风洞中舵面亚临界颤振试验[J].实验流体力学, 2011, 25(3):37-40. http://www.syltlx.com/CN/abstract/abstract10655.shtml

    Ji C, Ran J H, Liu Z Q. Flutter test of rudder in sub-tran-supersonic wind tunnel using subcritical response methods[J]. J Exp Fluid Mech, 2011, 25(3):37-40. http://www.syltlx.com/CN/abstract/abstract10655.shtml
    [13]
    钱卫, 何林祥, 王文卓, 等. 1. 2×1. 2m跨音速风洞模型颤振试验技术研究[C]//第六届全国流体弹性力学会议文集, 珠海, 1998. http://d.wanfangdata.com.cn/Conference_185643.aspx

    Qian W, He L X, Wang W Z, et al. 1.2×1.2m transonic wind tunnel model flutter test technology research[C]//Proceedings of the 6th National Symposium on Aeroelasticity, Zhuhai, 1998. http://d.wanfangdata.com.cn/Conference_185643.aspx
    [14]
    路波, 杨兴华, 罗建国, 等.跨声速风洞全模颤振试验悬浮支撑系统[J].实验流体力学, 2009, 23(3):90-94, 103. http://www.syltlx.com/CN/abstract/abstract9746.shtml

    Lu B, Yang X H, Luo J G, et al. Floating suspension system for full model flutter test in transonic wind tunnel[J]. J Exp Fluid Mech, 2009, 23(3):90-94, 103. http://www.syltlx.com/CN/abstract/abstract9746.shtml
    [15]
    郭洪涛, 路波, 余立, 等.某战斗机高速全模颤振风洞试验研究[J].航空学报, 2012, 33(10):1765-1771. http://www.cqvip.com/QK/91925X/201210/43551794.html

    Guo H T, Lu B, Yu L, et al. Investigation on full-model flutter test of a fighter plane in high-speed wind tunnel[J]. Acta Aeronautica et Astronautica Sinica, 2012, 33(10):1765-1771. http://www.cqvip.com/QK/91925X/201210/43551794.html
    [16]
    郭洪涛, 闫昱, 余立, 等.高速风洞连续变速压颤振试验技术研究[J].实验流体力学, 2015, 29(5):72-77. http://www.syltlx.com/CN/abstract/abstract10878.shtml

    Guo H T, Yan Y, Yu L, et al. Research on flutter test technology of continuously adjusting dynamical pressure in high-speed wind tunnel[J]. J Exp Fluid Mech, 2015, 29(5):72-77. http://www.syltlx.com/CN/abstract/abstract10878.shtml
    [17]
    闫昱, 余立, 吕彬彬, 等.超声速颤振风洞试验技术研究[J].实验流体力学, 2016, 30(6):76-80. http://www.syltlx.com/CN/abstract/abstract10984.shtml

    Yan Y, Yu L, Lyu B B, et al. Research on flutter test technique in supersonic wind tunnel[J]. J Exp Fluid Mech, 2016, 30(6):76-80. http://www.syltlx.com/CN/abstract/abstract10984.shtml
    [18]
    季辰, 李锋, 刘子强.高超声速风洞颤振试验技术研究[J].实验流体力学, 2015, 29(4):75-80. http://www.syltlx.com/CN/abstract/abstract10863.shtml

    Ji C, Li F, Liu Z Q. Research on flutter test technique in hypersonic wind tunnel[J]. J Exp Fluid Mech, 2015, 29(4):75-80. http://www.syltlx.com/CN/abstract/abstract10863.shtml
    [19]
    陈丁, 吕计男, 季辰, 等.双目视觉技术在高超声速颤振风洞试验中的应用[J].实验力学, 2015, 30(3):381-387. doi: 10.7520/1001-4888-14-192

    Chen D, Lyu J N, Ji C, et al. Application of binocular vision measurement in hypersonic flutter wind tunnel experiment[J]. Journal of Experimental Mechanics, 2015, 30(3):381-387. doi: 10.7520/1001-4888-14-192
    [20]
    Oppenheim A V, Shafer R W. Digital signal processing[M]. Upper Saddle River, NJ:Prentice-Hall, Inc. 1975.
    [21]
    Cooper J E. Parameter estimation methods for flight flutter testing[R]. CP-566, AGARD, 1995. https://www.researchgate.net/publication/292241846_Parameter_estimation_methods_for_flight_flutter_testing
  • 加载中

Catalog

    Figures(19)  / Tables(4)

    Article Metrics

    Article views(293) PDF downloads(1) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return