Citation: | WU Yang, HUANG Jin-sheng, CUI Jie, YOSHIMOTO Norimasa. Influences of particle shape and degree of compaction on shear response of clinker ash[J]. JOURNAL OF MECHANICAL ENGINEERING, 2021, 43(12): 2220-2229. doi: 10.11779/CJGE202112008 |
[1] |
闫澍旺, 李嘉, 张京京, 等. 石灰炉渣轻质混合料处理地基试验研究及工程应用[J]. 岩土工程学报, 2015, 37(增刊1): 6-10.
YAN Shu-wang, LI Jia, ZHANG Jing-jing, et al. Experimental research and engineering application of lime-slag mixed materials used in foundation treatment[J]. Chinese Journal of Geotechnical Engineering, 2015, 37(S1): 6-10. (in Chinese)
|
[2] |
刘传孝, 田鸿业, 张加旺, 等. 炉渣置换软土地基的注浆均质度影响试验研究[J]. 岩土工程学报, 2010, 32(增刊2): 517-520.
LIU Chuan-xiao, TIAN Hong-ye, ZHANG Jia-wang, et al. Test on grouting homogeneity degree of slag to replace soft soil foundation[J]. Chinese Journal of Geotechnical Engineering, 2010, 32(S2): 517-520. (in Chinese)
|
[3] |
章定文, 曹智国. 工业废渣加固土强度特性[J]. 岩土力学, 2013, 34(增刊1): 54-59.
ZHANG Ding-wen, CAO Zhi-guo. Strength characteristics of stabilized soils using industrial by-product binders[J]. Rock and Soil Mechanics, 2013, 34(S1): 54-59. (in Chinese)
|
[4] |
CONSOLI N C, HEINECK K S, COOP M R, et al. Coal bottom ash as a geomaterial: influence of particle morphology on the behavior of granular materials[J]. Soils and Foundations, 2007, 47(2): 361-373.
|
[5] |
WAKATSUKI Y, HYODO M, YOSHIMOTO N, et al. Particle characteristics and strength, deformation characteristics of loose clinker ash[J]. Doboku Gakkai Ronbunshuu C, 2009, 65(4): 897-914.
|
[6] |
WINTER M, SUESHIMA T, YOSHIMOTO N, et al. Effect of particle characteristics on the shear strength of clinker ash[M]//Geomechanics from Micro to Macro. Macro: CRC Press, 2014: 1099-1104.
|
[7] |
CHO G C, DODDS J, SANTAMARINA J C. Particle shape effects on packing density, stiffness, and strength: natural and crushed sands[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2006, 132(5): 591-602.
|
[8] |
刘清秉, 项伟, BUDHU M, 等. 砂土颗粒形状量化及其对力学指标的影响分析[J]. 岩土力学, 2011, 32(增刊1): 190-197.
LIU Qing-bing, XIANG Wei, BUDHU M, et al. Study of particle shape quantification and effect on mechanical property of sand[J]. Rock and Soil Mechanics, 2011, 32(S1): 190-197. (in Chinese)
|
[9] |
YANG J, LUO X D. Exploring the relationship between critical state and particle shape for granular materials[J]. Journal of the Mechanics and Physics of Solids, 2015, 84: 196-213.
|
[10] |
ZHOU B, WANG J, WANG H. Three-dimensional sphericity, roundness and fractal dimension of sand particles[J]. Géotechnique, 2018, 68(1): 18-30.
|
[11] |
ZHAO S W, ZHAO J D. A poly-superellipsoid-based approach on particle morphology for DEM modeling of granular media[J]. International Journal for Numerical and Analytical Methods in Geomechanics, 2019, 43(13): 2147-2169.
|
[12] |
NIE J Y, LI D Q, CAO Z J, et al. Probabilistic characterization and simulation of realistic particle shape based on sphere harmonic representation and Nataf transformation[J]. Powder Technology, 2020, 360: 209-220.
|
[13] |
孔亮, 彭仁. 颗粒形状对类砂土力学性质影响的颗粒流模拟[J]. 岩石力学与工程学报, 2011, 30(10): 2112-2119.
KONG Liang, PENG Ren. Particle flow simulation of influence of particle shape on mechanical properties of quasi-sands[J]. Chinese Journal of Rock Mechanics and Engineering, 2011, 30(10): 2112-2119. (in Chinese)
|
[14] |
张程林, 周小文. 砂土颗粒三维形状模拟离散元算法研究[J]. 岩土工程学报, 2015, 37(增刊1): 115-119.
ZHANG Cheng-lin, ZHOU Xiao-wen. Algorithm for modelling three-dimensional shape of sand based on discrete element method[J]. Chinese Journal of Geotechnical Engineering, 2015, 37(S1): 115-119. (in Chinese)
|
[15] |
常晓林, 马刚, 周伟, 等. 颗粒形状及粒间摩擦角对堆石体宏观力学行为的影响[J]. 岩土工程学报, 2012, 34(4): 646-653.
CHANG Xiao-lin, MA Gang, ZHOU Wei, et al. Influences of particle shape and inter-particle friction angle on macroscopic response of rockfill[J]. Chinese Journal of Geotechnical Engineering, 2012, 34(4): 646-653. (in Chinese)
|
[16] |
MA G, ZHOU W, REGUEIRO R A, et al. Modeling the fragmentation of rock grains using computed tomography and combined FDEM[J]. Powder Technology, 2017, 308: 388-397.
|
[17] |
HUANG Q S, ZHOU W, MA G, et al. Experimental and numerical investigation of Weibullian behavior of grain crushing strength[J]. Geoscience Frontiers, 2020, 11(2): 401-411.
|
[18] |
康馨, 陈植欣, 雷航, 等. 基于3D打印研究颗粒形状对砂土宏观力学性质的影响[J]. 岩土工程学报, 2020, 42(9): 1765-1772.
KANG Xin, CHEN Zhi-xin, LEI Hang, et al. Effects of particle shape on mechanical performance of sand with 3D printed soil analog[J]. Chinese Journal of Geotechnical Engineering, 2020, 42(9): 1765-1772. (in Chinese)
|
[19] |
ALTUHAFI F N, COOP M R, GEORGIANNOU V N. Effect of particle shape on the mechanical behavior of natural sands[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2016, 142(12): 4016071.
|
[20] |
LASHKARI A, FALSAFIZADEH S R, SHOURIJEH P T, et al. Instability of loose sand in constant volume direct simple shear tests in relation to particle shape[J]. Acta Geotechnica, 2020, 15(9): 2507-2527.
|
[21] |
JIS A 1224. Test Method for Minimum and Maximum Densities of Gravels[S]. 2009.
|
[22] |
YOSHIMURA Y, OGAWA S. A simple quantification method of grain shape of granular materials such as sand[J]. Doboku Gakkai Ronbunshu, 1993, 1993(463): 95-103.
|
[23] |
ZHENG J, HRYCIW R D. Traditional soil particle sphericity, roundness and surface roughness by computational geometry[J]. Géotechnique, 2015, 65(6): 494-506.
|
[24] |
NAKATA Y, HYODO M, HYDE A F L, et al. Microscopic particle crushing of sand subjected to high pressure one-dimensional compression[J]. Soils and Foundations, 2001, 41(1): 69-82.
|
[25] |
MCDOWELL G R, BOLTON M D. On the micromechanics of crushable aggregates[J]. Géotechnique, 1998, 48(5): 667-679.
|
[26] |
KIM B, PREZZI M, SALGADO R. Geotechnical properties of fly and bottom ash mixtures for use in highway embankments[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2005, 131(7): 914-924.
|
[27] |
BOPP P A, LADE P. Relative density effects on drained sand behavior at high pressures[J]. Soils and Foundations, 2005, 45: 15-26.
|
[28] |
YAO Y P, HOU W, ZHOU A N. UH model: three-dimensional unified hardening model for overconsolidated clays[J]. Géotechnique, 2009, 59(5): 451-469.
|
[29] |
YAO Y P, SUN D A, MATSUOKA H. A unified constitutive model for both clay and sand with hardening parameter independent on stress path[J]. Computers and Geotechnics,2008, 35(2): 210-222.
|
[30] |
YAO Y P, ZHOU A N. Non-isothermal unified hardening model: a thermo-elasto-plastic model for clays[J]. Géotechnique, 2013, 63(15): 1328-1345.
|
[31] |
YAO Y P, LU D C, ZHOU A N, et al. Generalized non-linear strength theory and transformed stress space[J]. Science in China Series E: Technological Sciences, 2004, 47: 691-709.
|