Citation: | Sun Jian, Cao Zhuo, Li Heng, et al. Application of artificial intelligence technology to numerical weather prediction. J Appl Meteor Sci, 2021, 32(1): 1-11. DOI: 10.11898/1001-7313.20210101 |
[1] |
段海来, 千怀遂.广州市城市电力消费对气候变化的响应.应用气象学报, 2009, 20(1):80-87. doi: 10.3969/j.issn.1001-7313.2009.01.010
Duan Hailai, Qian Huaisui.Responses of the electric power consumption to climate change in Guangzhou City.J Appl Meteor Sci, 2009, 20(1):80-87. doi: 10.3969/j.issn.1001-7313.2009.01.010
|
[2] |
郭建平.农业气象灾害监测预测技术研究进展.应用气象学报, 2016, 27(5):620-630. doi: 10.11898/1001-7313.20160510
Guo Jianping.Research progress on agricultural meteorological disaster monitoring and forecasting.J Appl Meteor Sci, 2016, 27(5):620-630. doi: 10.11898/1001-7313.20160510
|
[3] |
王纯枝, 霍治国, 张蕾, 等.北方地区小麦蚜虫气象适宜度预报模型构建.应用气象学报, 2020, 31(3):280-289. doi: 10.11898/1001-7313.20200303
Wang Chunzhi, Huo Zhiguo, Zhang Lei, et al.Construction of forecasting model of meteorological suitability for wheat aphids in the Northern China.J Appl Meteor Sci, 2020, 31(3):280-289. doi: 10.11898/1001-7313.20200303
|
[4] |
周雨, 刘志萍, 张国平.鹰厦铁路降水诱发地质灾害概率预报模型及应用.应用气象学报, 2015, 26(6):743-749. doi: 10.11898/1001-7313.20150611
Zhou Yu, Liu Zhiping, Zhang Guoping.Probability forecasting model of geological disaster along the Yingxia Railway induced by precipitation with its application.J Appl Meteor Sci, 2015, 26(6):743-749. doi: 10.11898/1001-7313.20150611
|
[5] |
侯英雨, 张蕾, 吴门新, 等.国家级现代农业气象业务技术进展.应用气象学报, 2018, 29(6):641-656. doi: 10.11898/1001-7313.20180601
Hou Yingyu, Zhang Lei, Wu Menxin, et al.Advances of modern agrometeorological service and technology in China.J Appl Meteor Sci, 2018, 29(6):641-656. doi: 10.11898/1001-7313.20180601
|
[6] |
高太长, 刘磊, 赵世军, 等.全天空测云技术现状及进展.应用气象学报, 2010, 21(1):101-109. doi: 10.3969/j.issn.1001-7313.2010.01.014
Gao Taichang, Liu Lei, Zhao Shijun, et al.The actuality and progress of whole sky cloud sounding techniques.J Appl Meteor Sci, 2010, 21(1):101-109. doi: 10.3969/j.issn.1001-7313.2010.01.014
|
[7] |
Zhai Panmao, Liu Jing.Extreme weather/climate events and disaster prevention and mitigation under global warming background.Engineering Sciences, 2012, 14(9):55-63.
|
[8] |
穆穆, 陈博宇, 周菲凡, 等.气象预报的方法与不确定性.气象, 2011, 37(1):1-13.
Mu Mu, Chen Boyu, Zhou Feifan, et al.Methods and uncertainties of meteorological forecast.Meteorological Monthly, 2011, 37(1):1-13.
|
[9] |
曾晓梅.国外人工智能技术在天气预报中的应用综述.气象科技, 1999, 27(1):4-10. https://www.cnki.com.cn/Article/CJFDTOTAL-QXKJ901.001.htm
Zeng Xiaomei.Application of artificial intelligence technology in weather forecast abroad.Meteorological Science and Technology, 1999, 27(1):4-10. https://www.cnki.com.cn/Article/CJFDTOTAL-QXKJ901.001.htm
|
[10] |
Cleveland A.The physical basis of long-range weather forecasts.Mon Wea Rev, 1901, 29(12):551.
|
[11] |
Bjerknes V.Das Problem der Wettervorhersage betrachtet vomStandpunkt der Mechanik und Physik.Meteorol Z, 1904, 21:1-7.
|
[12] |
Richardson L F.Weather Prediction by Numerical Process.Cambridge:Cambridge University Press, 1922.
|
[13] |
Charney J G, Fjoertoft R, Von Neumann J.Numerical integration of the barotropic vorticity equation.Tellus, 1950, 2:237-254.
|
[14] |
Lynch P.The origins of computer weather prediction and climate modeling.J Comput Phys, 2008, 227:3431-3444. doi: 10.1016/j.jcp.2007.02.034
|
[15] |
李泽椿, 陈德辉.国家气象中心集合数值预报业务系统的发展及应用.应用气象学报, 2002, 13(1):1-15. doi: 10.3969/j.issn.1001-7313.2002.01.001
Li Zechun, Chen Dehui.The development and application of the operational ensemble prediction system at National Meteorological Center.J Appl Meteor Sci, 2002, 13(1):1-15. doi: 10.3969/j.issn.1001-7313.2002.01.001
|
[16] |
沈学顺, 苏勇, 胡江林, 等.GRAPES_GFS全球中期预报系统的研发和业务化.应用气象学报, 2017, 28(1):1-10. doi: 10.11898/1001-7313.20170101
Shen Xueshun, Su Yong, Hu Jianglin, et al.Development and operation transformation of GRAPES global middle-range forecast system.J Appl Meteor Sci, 2017, 28(1):1-10. doi: 10.11898/1001-7313.20170101
|
[17] |
贺雅楠, 高嵩, 薛峰, 等.基于MICAPS4的智能网格预报平台设计与实现.应用气象学报, 2018, 29(1):13-24. doi: 10.11898/1001-7313.20180102
He Yanan, Gao Song, Xue Feng, et al.Design and implementation of intelligent grid forecasting platform based on MICAPS4.J Appl Meteor Sci, 2018, 29(1):13-24. doi: 10.11898/1001-7313.20180102
|
[18] |
李泽椿, 毕宝贵, 金荣花, 等.近10年中国现代天气预报的发展与应用.气象学报, 2014, 72(6):1069-1078. doi: 10.3969/j.issn.1004-4965.2014.06.007
Li Zechun, Bi Baogui, Jin Ronghua, et al.The development and application of the modern weather forecast in China for the recent 10 years.Acta Meteorologica Sinica, 2014, 72(6):1069-1078. doi: 10.3969/j.issn.1004-4965.2014.06.007
|
[19] |
Bauer P, Thorpe A, Brunet G.The quiet revolution of numerical weather prediction.Nature, 2015, 525(7567):47-55. doi: 10.1038/nature14956
|
[20] |
Goodfellow I, Bengio Y, Courville A.Deep Learning.Cambridge:MIT Press, 2016.
|
[21] |
Jain A K.Data clustering:50 years beyond k-means.Pattern Recognition Letters, 2009, 31(8):651-666.
|
[22] |
Yang J, Zhang D, Frangi A F, et al.Two-dimensional PCA:A new approach to appearance-based face representation and recognition.IEEE Transactions on Pattem Analysis and Machine Intelligence, 2004, 26(1):131-137. doi: 10.1109/TPAMI.2004.1261097
|
[23] |
周志华.机器学习.北京:清华大学出版社, 2016.
Zhou Zhihua.Machine Learning.Beijing:Tsinghua University Press, 2016.
|
[24] |
Hadji I, Wildes R P.What Do We Understand About Convolutional Networks?Preprint at https://arxiv.org/abs/1803.08834,2018:1-94.
|
[25] |
Graves A.Supervised sequence labelling with recurrent neural networks.Studies in Computational Intelligence, 2012, 385:1-131.
|
[26] |
Goodfellow I, Pouget-Abadie J, Mirza M, et al.Generative Adversarial Nets//Proceedings of the 27th International Conference on Neural Information Processing Systems, 2014: 2672-2680.
|
[27] |
Qin Z, Yu F, Liu C, et al.How convolutional neural networks see the world-A survey of convolutional neural network visualization methods.Mathematical Foundations of Computing, 2018, 1(2):149-180. doi: 10.3934/mfc.2018008
|
[28] |
Pearl J, Mackenzie D.The Book of Why.London:Allen Lane, 2019.
|
[29] |
Yosinski J, Clune J, Bengio Y, et al.How Transferable are Features in Deep Neural Networks?//Proceedings of the 27th International Conference on Neural Information Processing Systems, 2014: 3320-3328.
|
[30] |
Akhtar N M A.Threat of adversarial attacks on deep learning in computer vision:A Survey.IEEE Access, 2018, 6:14410-14430. doi: 10.1109/ACCESS.2018.2807385
|
[31] |
Feurer M, Klein A, Eggensperger K, et al.Efficient and robust automated machine learning.Advances in Neural Information Processing Systems, 2016, 28:2944-2952.
|
[32] |
Jin H, Song Q, Hu X.Auto-Keras: An Efficient Neural Architecture Search System//Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, 2019: 1946-1956.
|
[33] |
Francois-Lavet V, Henderson P, Islam R, et al.An introduction to deep reinforcement learning.Foundations and Trends in Machine Learning, 2018, 11(3-4), DOI: 10.1561/2200000071.
|
[34] |
Pedregosa F, Varoquaux G, Gramfort A, et al.Scikit-learn:Machine Learning in Python.Journal of Machine Learning Research, 2011, 12:2825-2830.
|
[35] |
Chollet F.Keras(2020-04-28)[2020-06-20].https://keras.io,2020.
|
[36] |
Abadi M, Barham P, Chen Jianmin, et al.TensorFlow: A System for Large-scale Machine Learning//Proceedings of the 12th USENIX conference on Operating Systems Design and Implementation, 2016: 265-283.
|
[37] |
Paszke A, Gross S, Chintala S, et al.Automatic Differentiation in PyTorch//31st Conference on Neural Information Processing Systems, 2017: 1-4.
|
[38] |
Yin S, Ouyang P, Tang S, et al.A high energy efficient reconfigurable hybrid neural network processor for deep learning applications.IEEE Journal of Solid-State Circuits, 2018, 53(4):968-982. doi: 10.1109/JSSC.2017.2778281
|
[39] |
Vazhkudai S, Supinski B R, Bland A S.The Design, Deployment, and Evaluation of the CORAL Pre-exascale Systems//The InternationalConference for High Performance Computing, Networking, Storage, and Analysis, 2018: 661-672.
|
[40] |
Reichstein M, Camps-Valls G, Stevens B, et al.Deep learning and process understanding for data-driven earth system science.Nature, 2019, 566(7743):195-204. doi: 10.1038/s41586-019-0912-1
|
[41] |
Karpatne A, Watkins W, Read J, at al.Physics-guided Neural Networks (PGNN): An Application in Lake Temperature Modeling.Preprint at https://arxiv.org/abs/1710.11431v2,2017:1-11.
|
[42] |
Karpatne A, Atluri G, Faghmous J, et al.Theory-guided data science:A new paradigm for scientific discovery from data.IEEE Transactions on Knowledge & Data Engineering, 2017, 29(10):2318-2331.
|
[43] |
Berry T, Harlim J.Correcting biased observation model error in data assimilation.Mon Wea Re, 2017, 145(7):2833-2853. doi: 10.1175/MWR-D-16-0428.1
|
[44] |
安捷, 马尽文.基于全卷积网络的遥感图像自动云检测.信号处理, 2019, 35(4):556-562.
An Jie, Ma Jinwen.Automatic cloud segmentation based on the fully convolutional neural networks.Journal of Signal Processing, 2019, 35(4):556-562.
|
[45] |
Chang Nibin, Bai Kaixu, Chen Chifarn.Smart information reconstruction via time-space-spectrum continuum for cloud removal in satellite images.IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2015, 8(5):1898-1912. doi: 10.1109/JSTARS.2015.2400636
|
[46] |
Moosavi A, Attia A, Sandu A.A Machine Learning Approach to Adaptive Covariance Localization.Preprint at https://arxiv.org/abs/1801.00548,2018:1-24.
|
[47] |
Cintra R, de Campos Velho H, Cocke S.Tracking the Model: Data Assimilation by Artificial Neural Network//2016 International Joint Conference on Neural Networks(IJCNN), 2016: 403-410.
|
[48] |
Lee Y J, Hall D, Stewart J, et al.Machine learning for targeted assimilation of satellite data.Machine Learning and Knowledge Discovery in Databases, 2018, 11053:53-68.
|
[49] |
Scher S.Toward data-driven weather and climate forecasting approximating a simple general circulation model with deep learning.Geophys Res Lett, 2018, 45(22):12616-12622. doi: 10.1029/2018GL080704
|
[50] |
Brenowitz N D, Bretherton C S.Prognostic validation of a neural network unified physics parameterization.Geophys Res Lett, 2018, 45:6289-6298. doi: 10.1029/2018GL078510
|
[51] |
Pan B, Hsu K, AghaKouchak A, et al.Improving precipitation estimation using convolutional neural network.Water Resources Research, 2019, 55(3):2301-2321. doi: 10.1029/2018WR024090
|
[52] |
O'Gorman P A, Dwyer J G.Using machine learning to parameterize moist convection:Potential for modeling of climate, climate change, and extreme events.Journal of Advances in Modeling Earth Systems, 2018, 10(10):2548-2563. doi: 10.1029/2018MS001351
|
[53] |
Rasp S, Pritchard M S, Gentine P.Deep learning to represent subgrid processes in climate models.Proceedings of the National Academy of Sciences, 2018, 115(39):9684-9689. doi: 10.1073/pnas.1810286115
|
[54] |
Xu H, Zhang T, Luo Y, et al.Parameter calibration in global soil carbon models using surrogate-based optimization.Geoscientific Model Development, 2018, 11(7):3027-3044. doi: 10.5194/gmd-11-3027-2018
|
[55] |
Wu L, Zhang T, Qin Y, et al.An effective parameter optimization with radiation balance constraint in CAM5.Geophys Res Lett, 2020, 13:41-53.
|
[56] |
Burke A.Calibration of machine learning-based probabilistic hail predictions for operational forecasting.Bull Amer Meteor Soc, 2020, 35:149-168.
|
[57] |
Taillardat M.Calibrated ensemble forecasts using quantile regression forests and ensemble model output statistics.Mon Wea Rev, 2016, 144(6):2375-2393. doi: 10.1175/MWR-D-15-0260.1
|
[58] |
Rasp S, Lerch S.Neural networks for postprocessing ensemble weather forecasts.Mon Wea Rev, 2018, 146(11):3885-3900. doi: 10.1175/MWR-D-18-0187.1
|
[59] |
Scher S, Messori G.Predicting weather forecast uncertainty with machine learning.Quart J Roy Meteor Soc, 2018, 144(717):2830-2841. doi: 10.1002/qj.3410
|
[60] |
Sonderby C K, Espeholt L, Heek J, et al.MetNet: A Neural Weather Model for Precipitation Forecasting.Preprint at https://arxiv.org/abs/2003.12140,2020:1-17.
|
[61] |
Ham Y G, Kim J H, Luo J J.Deep learning for multi-year ENSO forecasts.Nature, 2019, 573(7775):568-572. doi: 10.1038/s41586-019-1559-7
|
[62] |
Zhou K, Zheng Y, Li B, et al.Forecasting different types of convective weather:a deep learning approach.J Meteor Res, 2019, 33(5):797-809. doi: 10.1007/s13351-019-8162-6
|
[63] |
Kurth T, Treichler S, Romero J, et al.Exascale Deep Learning for Climate Analytics//Proceedings of the International Conference for High Performance Computing, Networking, Storage, and Analysis, 2018: 1-12.
|
[64] |
Rojek K.Machine learning method for energy reduction by utillzing dynamic mixed precision on GPU-based supercomputers.Concurrency and Computation:Practice and Experience, 2019, 31(6):e4644.1-e4644.12.
|
[65] |
Manandhar S, Dev S, Lee Y H, et al.A data-driven approach for accurate rainfall prediction.IEEE Trans Geosci Remote Sens, 2019, 57(11):9323-9331. doi: 10.1109/TGRS.2019.2926110
|
[66] |
Gagne D, Haupt S, Nychka D, et al.Interpretable deep learning for spatial analysis of severe hailstorms.Mon Wea Rev, 2019, 147(8):2827-2845. doi: 10.1175/MWR-D-18-0316.1
|
[67] |
Karevan Z, Suykens J.Transductive LSTM for time-series prediction:An application to weather forecasting.Neural Networks, 2020, 125:1-9. doi: 10.1016/j.neunet.2019.12.030
|
[68] |
Qiu M, Zhao P, Zhang K, et al.A Short-term Rainfall Prediction Model Using Multi-task Convolutional Neural Networks//2017 IEEE International Conference on Data Mining, 2017: 395-404.
|
[69] |
Yuan M, Ji X, Lu T, et al.A Novel Two-Factor Attention Encoder-Decoder Network through Combining Temporal and Prior Knowledge for Weather Forecasting//2019 International Joint Conference on Neural Networks, 2019: 1-8.
|
[70] |
Prasetya E P, Djamal E C.Rainfall Forecasting for the Natural Disasters Preparation Using Recurrent Neural Networks//2019 International Conference on Electrical Engineering and Informatics, 2019: 52-57.
|
[71] |
Tan C, Feng X, Long J, et al.FORECAST-CLSTM: A New Convolutional LSTM Network for Cloudage Nowcasting//2018 IEEE Visual Communications and Image Processing, 2018: 1-4.
|