| Citation: | GUO Donglin, XUE Liugen, HU Yuqin. Robust Estimation of Mean in Partially Linear Model With Missing Responses[J]. JOURNAL OF MECHANICAL ENGINEERING, 2017, 43(2): 313-319. doi: 10.11936/bjutxb2016040017 | 
	                | [1] | 
					 ENGLE R F, GRANGER C W J, RICE J, et al. Semiparametric estimates of the relation between weather and electricity sales[J]. Journal of the American Statistical Association, 1986, 81(394): 310-320. 
					
					 | 
			
| [2] | 
					 GAO J T, SHI P D.M-type smoothing splines inonparametric and semiparametric regression models[J]. Statistica Sinica, 1997, 7(4): 1155-1169. 
					
					 | 
			
| [3] | 
					 HAMILTON S A, TRUONG Y K.Local linear estimation in partly linear models[J]. Journal of Multivariate Analysis, 1997, 60(1): 1-19. 
					
					 | 
			
| [4] | 
					 ROBINSON P M.Root-n-consistent semiparametric regression[J]. Econometrika, 1988, 56(4): 931-954. 
					
					 | 
			
| [5] | 
					 XUE L G, ZHU L X.Empirical likelihood-based inference in a partially linear model for longitudinal data[J]. Science in China: Series A, 2008, 51(1): 115-130. 
					
					 | 
			
| [6] | 
					 QIN J, SHAO J, ZHANG B.Efficient and doubly robust imputation for covariate-dependent missing responses[J]. Journal of the American Statistical Association, 2008, 103(482): 797-810. 
					
					 | 
			
| [7] | 
					 QIN J, ZHANG B.Empirical-likelihood-based inference in missing response problems and its application in observational studies[J]. Journal of the Royal Statistical Society: Series B, 2007, 69(1): 101-122. 
					
					 | 
			
| [8] | 
					 ROBINS J M, ROTNITZKY A.Estimation of regression coefficients when some regressors are not always observed[J]. Journal of the American Statistical Association, 1994, 89(427): 846-866. 
					
					 | 
			
| [9] | 
					 WANG D, CHEN S X.Empirical likelihood for estimating equations with missing values[J]. The Annals of Statistics, 2009, 37(1): 490-517. 
					
					 | 
			
| [10] | 
					 ZHOU Y, WAN A T K, WANG X J. Estimating equations inference with missing data[J]. Journal of the American Statistical Association, 2008, 103(483): 1187-1199. 
					
					 | 
			
| [11] | 
					 WANG Q, RAO J N K. Empirical likelihood-based inference in linear models with missing data[J]. Scandinavian Journal of Statistics, 2002, 29(3): 563-576. 
					
					 | 
			
| [12] | 
					 XUE L G.Empirical likelihood for linear models with missing responses[J]. Journal of Multivariate Analysis, 2009, 100(7): 1353-1366. 
					
					 | 
			
| [13] | 
					 WANG C Y, WANG S J, GUTIERREZ R G, et al.Local linear regression for generalized linear models with missing data[J]. The Annals of Statistics, 1998, 26(3): 1028-1050. 
					
					 | 
			
| [14] | 
					 XUE D, XUE L G, CHENG W H.Empirical likelihood for generalized linear models with missing responses[J]. Journal of Statistical Planning and Inference, 2011, 141(6): 2007-2020. 
					
					 | 
			
| [15] | 
					 ZHAO P X, XUE L G.Variable selection for semiparametric varying-coefficient partially linear models with missing response at random[J]. Acta Methematica Sinica: English series, 2011, 27(11): 2205-2216. 
					
					 | 
			
| [16] | 
					 LIANG H, WANG S J, ROBINS J M, et al.Estimation in partially linear models with missing covariates[J]. Journal of the American Statistical Association, 2004, 99(466): 357-367. 
					
					 | 
			
| [17] | 
					 WANG Q H, LINTON O, HARDLE W.Semiparametric regression analysis with missing response at random[J]. Journal of the American Statistical Association, 2004 , 99(466): 334-345. 
					
					 | 
			
| [18] | 
					 WANG Q H, SUN Z H.Estimation in partially linear models with missing responses at random[J]. Journal of Multivariate Analysis, 2007, 98(7): 1470-1493. 
					
					 | 
			
| [19] | 
					 LIANG H, WANG S J, ROBINS J M, et al.Partially linear models with missing response variables and error-prone covariates[J]. Biometrika, 2007, 94(1): 185-198. 
					
					 | 
			
| [20] | 
					 WANG Q H.Statistical estimation in partial linear models with covariate data missing at random[J]. Annals of the Institute of Statistical Mathematics, 2009, 61(1): 47-84. 
					
					 | 
			
| [21] | 
					 XUE L G, XUE D.Empirical likelihood for semiparametric regression model with missing response data[J]. Journal of Multivariate Analysis, 2011, 102(4): 723-740. 
					
					 | 
			
| [22] | 
					 LIANG H, QIN Y S.Empirical likelihood-based inferencesfor partially linear models with missing covariates[J]. Australian & New Zealand Journal of Statistics, 2008, 50(4): 347-359. 
					
					 | 
			
| [23] | 
					 CAO W H, TSIATIS A A, DAVIDIAN M.Improving efficiency and roubustness of the doubly robust estimator for a population mean with incomplete data[J]. Biometrika, 2009, 96(3): 723-734. 
					
					 | 
			
| [24] | 
					 HAN P S, WANG L.Estimation with missing data: beyond double robustness[J]. Biometrika, 2013, 100(2): 417-430. 
					
					 | 
			
| [25] | 
					 HAN P S.Multiply robust estimation in regression analysis with missing data[J]. Journal of the American Statistical Association, 2014, 109(507), 1159-1173. 
					
					 | 
			
| [26] | 
					 KANG J D Y, SCHAFER J L. Demystifying double robustness: a comparison of alternative strategies for estimating a population mean from incomplete data[J]. Statistical Science, 2007, 22(4): 523-539. 
					
					 | 
			
| [27] | 
					 IMAI K, RATKOVIC M.Covariate balancing propensity score[J]. Journal of the Royal Statistical Society: Series B, 2014, 76(1): 243-263. 
					
					 | 
			
| [28] | 
					 RUBIN D B.Inference and missing data[J]. Biometrika, 1976, 63(3): 581-592. 
					
					 | 
			
| [29] | 
					 HANSEN L P.Large sample properties of generalized method of moments estimators[J]. Econometrica, 1982, 50(4): 1029-1054. 
					
					 | 
			
| [30] | 
					 NEWEY W K, MCFADDEN D.Large sample estimation and hypothesis testing[M]. New York: Springer, 1994: 18-58. 
					
					 | 
			
| [31] | 
					 LIANG H.Asymptotic normality of parametric part in partially linear models with measurement error in the nonparametric part[J]. Journal of Statistical Planning and Inference, 2000, 86(1): 51-62. 
					
					 |