Volume 43 Issue 1
Sep 2022
Turn off MathJax
Article Contents
JIA Xibin, LI Ning, JIN Ya. Dynamic Convolutional Neural Network Extreme Learning Machine for Text Sentiment Classification[J]. JOURNAL OF MECHANICAL ENGINEERING, 2017, 43(1): 28-35. doi: 10.11936/bjutxb2016040093
Citation: JIA Xibin, LI Ning, JIN Ya. Dynamic Convolutional Neural Network Extreme Learning Machine for Text Sentiment Classification[J]. JOURNAL OF MECHANICAL ENGINEERING, 2017, 43(1): 28-35. doi: 10.11936/bjutxb2016040093

Dynamic Convolutional Neural Network Extreme Learning Machine for Text Sentiment Classification

doi: 10.11936/bjutxb2016040093
  • Received Date: 27 Apr 2016
    Available Online: 09 Sep 2022
  • Issue Publish Date: 01 Jan 2017
  • Aim ing at improving the generalization performance of the dynamic convolutional neural network on text sentiment classification, a dynamic convolutional extreme learning machine algorithm was proposed. This algorithm modified the output layer of dynamic convolutional neural network by replacing the fully connection layer with the shallow random neural network. By utilizing the perturbation ability of the random generation of parameters, it is prone to mitigate the dependence on training samples and avoid over-fitting to improve the classification performance. Experiments on several public data sets show that this approach outperforms the dynamic convolutional neural network and extreme learning machine under the evaluation metrics including accuracy rate, F1-measure, etc.

     

  • loading
  • [1]
    DAVE K, LAWRENCE S, PENNOCK D M.Mining the peanut gallery: opinion extraction and semantic classification of product reviews[C]//Proceedings of the 12th international conference on World Wide Web. New York: ACM, 2003: 519-528.
    [2]
    KIM S M, HOVY E.Determining the sentiment of opinions[C]//Proceedings of the 20th international conference on Computational Linguistics. Stroudsburg: ACL, 2004: 1367-1373
    [3]
    YANG D, YANG A M.Classification approach of Chinese texts sentiment based on semantic lexicon and naive Bayesian[J]. Application Research of Computers, 2010, 27(10): 3737-3739. (in chinese)
    [4]
    JI J Z, ZHANG L L, WU C S, et al.Semantic weight-based naive Bayesian algorithm for text sentiment classification[J]. Journal of Beijing University of Technology, 2014, 40(12): 1884-1890. (in chinese)
    [5]
    PANG B, LEE L, VAITHYANATHAN S.Thumbs up?: sentiment classification using machine learning techniques[C] ∥Proceedings of the ACL-02 Conference on Empirical Methods in Natural Language Processing. Stroudsburg: ACL, 2002: 79-86.
    [6]
    SOCHERRPENNINGTONJHUANG EHet al.Semi-supervised recursive autoencoders for predicting sentiment distributions Proceedings of the Conference on Empirical Methods in Natural Language Processing. Stroudsburg: ACL2011151161

    SOCHER R, PENNINGTON J, HUANG E H, et al.Semi-supervised recursive autoencoders for predicting sentiment distributions[C]// Proceedings of the Conference on Empirical Methods in Natural Language Processing. Stroudsburg: ACL, 2011: 151-161.

    [7]
    SOCHERRPERELYGINAWUJet al.Recursive deep models for semantic compositionality over a sentiment treebank Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Stroudsburg: ACL201316311642

    SOCHER R, PERELYGIN A, WU J, et al.Recursive deep models for semantic compositionality over a sentiment treebank[C]// Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Stroudsburg: ACL, 2013: 1631-1642.

    [8]
    JURGOVSKY J, GRANITZER M.Comparing recursive autoencoder and convolutional network for phrase-level sentiment polarity classification[C]// International Conference on Applications of Natural Language to Information Systems. Berlin: Springer, 2015: 160-166.
    [9]
    KALCHBRENNER N, GREFENSTETTE E, BLUNSOM P.A convolutional neural network for modelling sentences[C] ∥Proceedings of the 52nd Annual Meeting of the Association for Computational Linguistics. Baltimore: ACL, 2014: 655-665.
    [10]
    KIM Y.Convolutional neural networks for sentence classification[C]//Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing. Doha: ACL, 2014: 1746-1751.
    [11]
    HERMANN K M, BLUNSOM P.The role of syntax in vector space models of compositional semantics[C]//Proceedings of the 51st Annual Meeting of the Association for Computational Linguistics. Sofia: ACL, 2013: 894-904.
    [12]
    SOCHERRHUVALBMANNING CDet al.Semantic compositionality through recursive matrix-vector spaces Proceedings of the 2012 Joint Conference on Empirical Methods in Natural Language Processing and Computational Natural Language Learning. Stroudsburg: ACL201212011211

    SOCHER R, HUVAL B, MANNING C D, et al.Semantic compositionality through recursive matrix-vector spaces[C]// Proceedings of the 2012 Joint Conference on Empirical Methods in Natural Language Processing and Computational Natural Language Learning. Stroudsburg: ACL, 2012: 1201-1211.

    [13]
    HUANG G B, ZHU Q Y, SIEW C K.Extreme learning machine: theory and applications[J]. Neurocomputing, 2006, 70(1/2/3): 489-501.
    [14]
    HUANG GBZHU QYSIEW CK.Extreme learning machine: a new learning scheme of feedforward neural networks 2004 Proceedings 2004 IEEE International Joint Conference on Neural Networks. Piscataway: IEEE20042985990

    HUANG G B, ZHU Q Y, SIEW C K.Extreme learning machine: a new learning scheme of feedforward neural networks[C]// 2004 Proceedings 2004 IEEE International Joint Conference on Neural Networks. Piscataway: IEEE, 2004, 2: 985-990.

    [15]
    MIKOLOV T, YIH W, ZWEIG G.Linguistic regularities in continuous spaceword representations[C]//Proceedings of the 2013 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies. Atlanta: ACL, 2013: 746-751.
    [16]
    TAN S, ZHANG J.An empirical study of sentiment analysis for Chinese documents[J]. Expert Systems with Applications, 2008, 34(4): 2622-2629.
    [17]
    LIN Y, LEI H, WU J, et al.An empirical study on sentiment classification of chinese review using word embedding[C]// 29th Pacific Asia Conference on Language, Information and Computation. Shanghai: Computer Science, 2015: 258-266.
  • 加载中

Catalog

    Figures(10)  / Tables(2)

    Article Metrics

    Article views(100) PDF downloads(0) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return