Citation: | JIA Xibin, LI Ning, JIN Ya. Dynamic Convolutional Neural Network Extreme Learning Machine for Text Sentiment Classification[J]. JOURNAL OF MECHANICAL ENGINEERING, 2017, 43(1): 28-35. doi: 10.11936/bjutxb2016040093 |
[1] |
DAVE K, LAWRENCE S, PENNOCK D M.Mining the peanut gallery: opinion extraction and semantic classification of product reviews[C]//Proceedings of the 12th international conference on World Wide Web. New York: ACM, 2003: 519-528.
|
[2] |
KIM S M, HOVY E.Determining the sentiment of opinions[C]//Proceedings of the 20th international conference on Computational Linguistics. Stroudsburg: ACL, 2004: 1367-1373
|
[3] |
YANG D, YANG A M.Classification approach of Chinese texts sentiment based on semantic lexicon and naive Bayesian[J]. Application Research of Computers, 2010, 27(10): 3737-3739. (in chinese)
|
[4] |
JI J Z, ZHANG L L, WU C S, et al.Semantic weight-based naive Bayesian algorithm for text sentiment classification[J]. Journal of Beijing University of Technology, 2014, 40(12): 1884-1890. (in chinese)
|
[5] |
PANG B, LEE L, VAITHYANATHAN S.Thumbs up?: sentiment classification using machine learning techniques[C] ∥Proceedings of the ACL-02 Conference on Empirical Methods in Natural Language Processing. Stroudsburg: ACL, 2002: 79-86.
|
[6] |
SOCHER R, PENNINGTON J, HUANG E H, et al.Semi-supervised recursive autoencoders for predicting sentiment distributions[C]// Proceedings of the Conference on Empirical Methods in Natural Language Processing. Stroudsburg: ACL, 2011: 151-161. |
[7] |
SOCHER R, PERELYGIN A, WU J, et al.Recursive deep models for semantic compositionality over a sentiment treebank[C]// Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Stroudsburg: ACL, 2013: 1631-1642. |
[8] |
JURGOVSKY J, GRANITZER M.Comparing recursive autoencoder and convolutional network for phrase-level sentiment polarity classification[C]// International Conference on Applications of Natural Language to Information Systems. Berlin: Springer, 2015: 160-166.
|
[9] |
KALCHBRENNER N, GREFENSTETTE E, BLUNSOM P.A convolutional neural network for modelling sentences[C] ∥Proceedings of the 52nd Annual Meeting of the Association for Computational Linguistics. Baltimore: ACL, 2014: 655-665.
|
[10] |
KIM Y.Convolutional neural networks for sentence classification[C]//Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing. Doha: ACL, 2014: 1746-1751.
|
[11] |
HERMANN K M, BLUNSOM P.The role of syntax in vector space models of compositional semantics[C]//Proceedings of the 51st Annual Meeting of the Association for Computational Linguistics. Sofia: ACL, 2013: 894-904.
|
[12] |
SOCHER R, HUVAL B, MANNING C D, et al.Semantic compositionality through recursive matrix-vector spaces[C]// Proceedings of the 2012 Joint Conference on Empirical Methods in Natural Language Processing and Computational Natural Language Learning. Stroudsburg: ACL, 2012: 1201-1211. |
[13] |
HUANG G B, ZHU Q Y, SIEW C K.Extreme learning machine: theory and applications[J]. Neurocomputing, 2006, 70(1/2/3): 489-501.
|
[14] |
HUANG G B, ZHU Q Y, SIEW C K.Extreme learning machine: a new learning scheme of feedforward neural networks[C]// 2004 Proceedings 2004 IEEE International Joint Conference on Neural Networks. Piscataway: IEEE, 2004, 2: 985-990. |
[15] |
MIKOLOV T, YIH W, ZWEIG G.Linguistic regularities in continuous spaceword representations[C]//Proceedings of the 2013 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies. Atlanta: ACL, 2013: 746-751.
|
[16] |
TAN S, ZHANG J.An empirical study of sentiment analysis for Chinese documents[J]. Expert Systems with Applications, 2008, 34(4): 2622-2629.
|
[17] |
LIN Y, LEI H, WU J, et al.An empirical study on sentiment classification of chinese review using word embedding[C]// 29th Pacific Asia Conference on Language, Information and Computation. Shanghai: Computer Science, 2015: 258-266.
|