Citation: | LI Yujian, SHEN Chengkai, YANG Hongli, HU Haihe. PCA Shuffling Initialization of Convolutional Neural Networks[J]. JOURNAL OF MECHANICAL ENGINEERING, 2017, 43(1): 22-27. doi: 10.11936/bjutxb2016060070 |
[1] |
KRIZHEVSKY A, SUTSKEVER I, HINTON G E.ImageNet classification with deep convolutional neural networks[J]. Advances in Neural Information Processing Systems, 2012, 25(2): 2012.
|
[2] |
THIMM G, FIESLER E.Neural network initialization[C]//International Workshop on Artificial Neural Networks: From Natural To Artificial Neural Computation. Berlin: Springer-Verlag, 1995: 535-542.
|
[3] |
GLOROT X, BENGIO Y.Understanding the difficulty of training deep feedforward neural networks[J]. Journal of Machine Learning Research, 2010, 9: 249-256.
|
[4] |
BENGIO Y.Practical recommendations for gradient-based training of deep architectures[J]. Journal of Non-Crystalline Solids, 2012, 71(1/2/3): 133-144.
|
[5] |
ABDI H, WILLIAMS L J.Principal component analysis[J]. Wiley Interdisciplinary Reviews Computational Statistics, 2010, 2(4): 433-459.
|
[6] |
SHLENS J.A tutorial on principal component analysis[J]. Eprint Arxiv, 2014, 58(3): 219-226.
|
[7] |
JIA Y, SHELHAMER E, DONAHUE J, et al.Caffe: convolutional architecture for fast feature embedding[C]//Proceedings of the 22nd ACM International Conference on Multimedia. New York: ACM, 2014: 675-678.
|
[8] |
LECUN Y.MNIST[DS/OL]. [2016-06-23].http:∥yann. lecun.com/exdb/mnist/.
|
[9] |
LECUN Y, BOTTOU L, BENGIO Y.Granient-based learning applied to document recognition[J]. Proceedings of IEEE, 1988, 86(11): 2278-2324. |
[10] |
KRIZHEVSKY A.Learning multiple layers of features from tiny images[D]. MSc thesis, Toronto: University of Toronto, 2009.
|
[11] |
KRIZHEVSKY A.Cuda-convnet[CP/OL]. [2016-06-23]. https://code.google.com/p/cuda-convnet/source/browse/trunk/example-layers/layers-80sec.cfg. 2012. https://code.google.com/p/cuda-convnet/source/browse/trunk/example-layers/layers-80sec.cfg
|