Citation: | Dong Yindong, Ren Fuji, Li Chunbin. EEG emotion recognition based on linear kernel PCA and XGBoost[J]. JOURNAL OF MECHANICAL ENGINEERING, 2021, 48(2): 200013. doi: 10.12086/oee.2021.200013 |
[1] |
Vilar P. Designing the user interface: strategies for effective human-computer interaction (5th edition)[J]. J Assoc Inf Sci Technol, 2010, 65(5): 1073–1074.
|
[2] |
Andreasson R, Alenljung B, Billing E, et al. Affective touch in human–robot interaction: conveying emotion to the Nao robot[J]. Int J Soc Robot, 2018, 10(3): 473–491. doi: 10.1007/s12369-017-0446-3
|
[3] |
任福继, 孙晓. 智能机器人的现状及发展[J]. 科技导报, 2015, 33(21): 32–38. https://www.cnki.com.cn/Article/CJFDTOTAL-KJDB201521011.htm
Ren F J, Sun X. Present situation and development of intelligent robots[J]. Sci Technol Rev, 2015, 33(21): 32–38. https://www.cnki.com.cn/Article/CJFDTOTAL-KJDB201521011.htm
|
[4] |
Fragopanagos N, Taylor J G. Emotion recognition in human-computer interaction[J]. Neural Netw, 2005, 18(4): 389–405. doi: 10.1016/j.neunet.2005.03.006
|
[5] |
王晓华, 李瑞静, 胡敏, 等. 融合局部特征的面部遮挡表情识别[J]. 中国图象图形学报, 2016, 21(11): 1473–1482. doi: 10.11834/jig.20161107
Wang X H, Li R J, Hu M, et al. Occluded facial expression recognition based on the fusion of local features[J]. J Image Graph, 2016, 21(11): 1473–1482. doi: 10.11834/jig.20161107
|
[6] |
Ren F J, Huang Z. Automatic facial expression learning method based on humanoid robot XIN-REN[J]. IEEE Trans Hum Mach Syst, 2016, 46(6): 810–821. doi: 10.1109/THMS.2016.2599495
|
[7] |
张石清, 李乐民, 赵知劲. 基于一种改进的监督流形学习算法的语音情感识别[J]. 电子与信息学报, 2010, 32(11): 2724–2729. https://www.cnki.com.cn/Article/CJFDTOTAL-DZYX201011034.htm
Zhang S Q, Li L M, Zhao Z J. Speech emotion recognition based on an improved supervised manifold learning algorithm[J]. J Electron Inf Technol, 2010, 32(11): 2724–2729. https://www.cnki.com.cn/Article/CJFDTOTAL-DZYX201011034.htm
|
[8] |
Piana S, Staglianò A, Odone F, et al. Adaptive body gesture representation for automatic emotion recognition[J]. ACM Trans Interact Intell Syst, 2016, 6(1): 6. doi: 10.1145/2818740
|
[9] |
孙晓, 彭晓琪, 胡敏, 等. 基于多维扩展特征与深度学习的微博短文本情感分析[J]. 电子与信息学报, 2017, 39(9): 2048–2055. https://www.cnki.com.cn/Article/CJFDTOTAL-DZYX201709003.htm
Sun X, Peng X Q, Hu M, et al. Extended multi-modality features and deep learning based microblog short text sentiment analysis[J]. J Electron Inf Technol, 2017, 39(9): 2048–2055. https://www.cnki.com.cn/Article/CJFDTOTAL-DZYX201709003.htm
|
[10] |
Ren F J, Wang L. Sentiment analysis of text based on three-way decisions[J]. J Intell Fuzzy Syst, 2017, 33(1): 245–254. doi: 10.3233/JIFS-161522
|
[11] |
赵国朕, 宋金晶, 葛燕, 等. 基于生理大数据的情绪识别研究进展[J]. 计算机研究与发展, 2016, 53(1): 80–92. https://www.cnki.com.cn/Article/CJFDTOTAL-JFYZ201601009.htm
Zhao G Z, Song J J, Ge Y, et al. Advances in emotion recognition based on physiological big data[J]. J Comput Res Dev, 2016, 53(1): 80–92. https://www.cnki.com.cn/Article/CJFDTOTAL-JFYZ201601009.htm
|
[12] |
Petrantonakis P C, Hadjileontiadis L J. Adaptive emotional information retrieval from EEG signals in the time-frequency domain[J]. IEEE Trans Signal Process, 2012, 60(5): 2604–2616. doi: 10.1109/TSP.2012.2187647
|
[13] |
Lin Y P, Wang C H, Jung T P, et al. EEG-based emotion recognition in music listening[J]. IEEE Trans Biomed Eng, 2010, 57(7): 1798–1806. doi: 10.1109/TBME.2010.2048568
|
[14] |
Yin Z, Wang Y X, Liu L, et al. Cross-subject EEG feature selection for emotion recognition using transfer recursive feature elimination[J]. Front Neurorobot, 2017, 11: 19. http://europepmc.org/abstract/MED/28443015
|
[15] |
Jenke R, Peer A, Buss M. Feature extraction and selection for emotion recognition from EEG[J]. IEEE Trans Affect Comput, 2014, 5(3): 327–339. doi: 10.1109/TAFFC.2014.2339834
|
[16] |
Li X, Song D W, Zhang P, et al. Exploring EEG features in cross-subject emotion recognition[J]. Front Neurosci, 2018, 12: 162. doi: 10.3389/fnins.2018.00162
|
[17] |
李幼军, 钟宁, 黄佳进, 等. 进基于高斯核函数支持向量机的脑电信号时频特征情感多类识别[J]. 北京工业大学学报, 2018, 44(2): 234–243. https://www.cnki.com.cn/Article/CJFDTOTAL-BJGD201802012.htm
Li Y J, Zhong N, Hang J J, et al. Human emotion multi-classification recognition based on the EEG time and frequency features by using a Gaussian kernel function SVM[J]. J Beijing Univ Technol, 2018, 44(2): 234–243. https://www.cnki.com.cn/Article/CJFDTOTAL-BJGD201802012.htm
|
[18] |
李昕, 田彦秀, 侯永捷, 等. 小波变换结合经验模态分解在音乐干预脑电分析中的应用[J]. 生物医学工程学杂志, 2016, 33(4): 762–769. https://www.cnki.com.cn/Article/CJFDTOTAL-SWGC201604024.htm
Li X, Tian Y X, Hou Y J, et al. Applications of wavelet transform combining empirical mode decomposition in EEG Analysis with music intervention[J]. J Biomed Eng, 2016, 33(4): 762–769. https://www.cnki.com.cn/Article/CJFDTOTAL-SWGC201604024.htm
|
[19] |
Zheng W L, Zhu J Y, Lu B L. Identifying stable patterns over time for emotion recognition from EEG[J]. IEEE Trans Affect Comput, 2019, 10(3): 417–429. doi: 10.1109/TAFFC.2017.2712143
|
[20] |
李昕, 蔡二娟, 田彦秀, 等. 一种改进脑电特征提取算法及其在情感识别中的应用[J]. 生物医学工程学杂志, 2017, 34(4): 510–517, 528. https://www.cnki.com.cn/Article/CJFDTOTAL-SWGC201704004.htm
Li X, Cai E J, Tian Y X, et al. An improved electroencephalogram feature extraction algorithm and its application in emotion recognition[J]. J Biomed Eng, 2017, 34(4): 510–517, 528. https://www.cnki.com.cn/Article/CJFDTOTAL-SWGC201704004.htm
|
[21] |
李幼军, 黄佳进, 王海渊, 等. 基于SAE和LSTM RNN的多模态生理信号融合和情感识别研究[J]. 通信学报, 2017, 38(12): 109–120. https://www.cnki.com.cn/Article/CJFDTOTAL-TXXB201712011.htm
Li Y J, Huang J J, Wang H Y, et al. Study of emotion recognition based on fusion multi-modal bio-signal with SAE and LSTM recurrent neural network[J]. J Commun, 2017, 38(12): 109–120. https://www.cnki.com.cn/Article/CJFDTOTAL-TXXB201712011.htm
|
[22] |
Chen J X, Zhang P W, Mao Z J, et al. Accurate EEG-based emotion recognition on combined features using deep convolutional neural networks[J]. IEEE Access, 2019, 7: 44317–44328. http://ieeexplore.ieee.org/document/8676231
|
[23] |
郭金良, 方芳, 王伟, 等. 基于稀疏组lasso-granger因果关系特征的脑电信号情感识别[J]. 模式识别与人工智能, 2018, 31(10): 941–949. https://www.cnki.com.cn/Article/CJFDTOTAL-MSSB201810011.htm
Guo J L, Fang F, Wang W, et al. EEG emotion recognition based on sparse group lasso-granger causality feature[J]. Pattern Recognit Artif Intell, 2018, 31(10): 941–949. https://www.cnki.com.cn/Article/CJFDTOTAL-MSSB201810011.htm
|
[24] |
Atkinson J, Campos D. Improving BCI-based emotion recognition by combining EEG feature selection and kernel classifiers[J]. Expert Syst Appl, 2016, 47: 35–41. http://www.sciencedirect.com/science/article/pii/S0957417415007538
|
[25] |
Gupta R, Laghari K U R, Falk T H. Relevance vector classifier decision fusion and EEG graph-theoretic features for automatic affective state characterization[J]. Neurocomputing, 2016, 174: 875–884. http://www.sciencedirect.com/science/article/pii/S0925231215014186
|
[26] |
Chen T Q, Guestrin C. XGBoost: a scalable tree boosting system[C]//Proceedings of the 22nd ACM SIGKDD International conference on Knowledge Discovery and Data Mining, 2016: 785–794.
|
[27] |
张爱武, 董喆, 康孝岩. 基于XGBoost的机载激光雷达与高光谱影像结合的特征选择算法[J]. 中国激光, 2019, 46(4): 0404003. https://www.cnki.com.cn/Article/CJFDTOTAL-JJZZ201904020.htm
Zhang A W, Dong J, Kang X Y. Feature selection algorithms of airborne LIDAR combined with hyperspectral images based on XGBoost[J]. Chin J Lasers, 2019, 46(4): 0404003. https://www.cnki.com.cn/Article/CJFDTOTAL-JJZZ201904020.htm
|
[28] |
Zheng H T, Yuan J B, Chen L. Short-term load forecasting using EMD-LSTM neural networks with a XGBoost algorithm for feature importance evaluation[J]. Energies, 2017, 10(8): 1168. http://www.researchgate.net/publication/318996236_Short-Term_Load_Forecasting_Using_EMD-LSTM_Neural_Networks_with_a_Xgboost_Algorithm_for_Feature_Importance_Evaluation
|
[29] |
Chakraborty D, Elzarka H. Advanced machine learning techniques for building performance simulation: a comparative analysis[J]. J Build Perform Simul, 2019, 12(2): 193–207. doi: 10.1080/19401493.2018.1498538?scroll=top
|
[30] |
Luo Y N, Zou J, Yao C F, et al. HSI-CNN: a novel convolution neural network for hyperspectral image[C]//2018 International Conference on Audio, Language and Image Processing (ICALIP), 2018.
|
[31] |
Ayumi V. Pose-based human action recognition with Extreme Gradient Boosting[C]//2016 IEEE Student Conference on Research and Development (SCOReD), 2016.
|
[32] |
Zhong J C, Sun Y S, Peng W, et al. XGBFEMF: an XGBoost-based framework for essential protein prediction[J]. IEEE Trans NanoBioscience, 2018, 17(3): 243–250. http://ieeexplore.ieee.org/abstract/document/8370098/
|
[33] |
Koelstra S, Muhl C, Soleymani M, et al. DEAP: a database for emotion analysis; using physiological signals[J]. IEEE Trans Affect Comput, 2012, 3(1): 18–31. doi: 10.1109/T-AFFC.2011.15
|