Citation: | Li Xun, Li Linpeng, Alexander Lazovik, Wang Wenjie, Wang Xiaohua. RGB-D object recognition algorithm based on improved double stream convolution recursive neural network[J]. JOURNAL OF MECHANICAL ENGINEERING, 2021, 48(2): 200069. doi: 10.12086/oee.2021.200069 |
[1] |
Lai K, Bo L F, Ren X F, et al. A large-scale hierarchical multi-view RGB-D object dataset[C]//Proceedings of 2011 IEEE International Conference on Robotics and Automation, 2011: 1817-1824.
|
[2] |
Paulk D, Metsis V, McMurrough C, et al. A supervised learning approach for fast object recognition from RGB-D data[C]//Proceedings of the 7th International Conference on PErvasive Technologies Related to Assistive Environments, 2014: 5.
|
[3] |
Bo L F, Ren X F, Fox D. Depth kernel descriptors for object recognition[C]//Proceedings of 2011 IEEE/RSJ International Conference on Intelligent Robots and Systems, 2011: 821-826.
|
[4] |
Blum M, Springenberg J T, Wülfing J, et al. A learned feature descriptor for object recognition in RGB-D data[C]//Proceedings of 2012 IEEE International Conference on Robotics and Automation, 2012: 1298-1303.
|
[5] |
向程谕. RGB-D图像的特征提取与分类方法研究[D]. 湘潭: 湘潭大学, 2017: 28-31.
Xiang C Y. Research on feature extraction and classification method of RGB-D images[D]. Xiangtan: Xiangtan University, 2017: 28-31.
|
[6] |
李珣, 李林鹏, 南恺恺, 等. 智能家居移动机器人的人脸识别方法[J]. 西安工程大学学报, 2020, 34(1): 61-66. https://www.cnki.com.cn/Article/CJFDTOTAL-XBFZ202001010.htm
Li X, Li L P, Nan K K, et al. Face recognition method of smart home mobile robot[J]. J Xi'an Poly Univ, 2020, 34(1): 61-66. https://www.cnki.com.cn/Article/CJFDTOTAL-XBFZ202001010.htm
|
[7] |
Socher R, Huval B, Bhat B, et al. Convolutional-recursive deep learning for 3D object classification[C]//Proceedings of the 25th International Conference on Neural Information Processing Systems, 2012: 665-673.
|
[8] |
殷云华, 李会方. 基于混合卷积自编码极限学习机的RGB-D物体识别[J]. 红外与激光工程, 2018, 47(2): 0203008. https://www.cnki.com.cn/Article/CJFDTOTAL-HWYJ201802009.htm
Yin Y H, Li H F. RGB-D object recognition based on hybrid convolutional auto-encoder extreme learning machine[J]. Infrared Laser Eng, 2018, 47(2): 0203008. https://www.cnki.com.cn/Article/CJFDTOTAL-HWYJ201802009.htm
|
[9] |
Eitel A, Springenberg J T, Spinello L, et al. Multimodal deep learning for robust RGB-D object recognition[C]//Proceedings of 2015 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), 2015: 681-687.
|
[10] |
Aakerberg A, Nasrollahi K, Rasmussen C B, et al. Depth value pre-processing for accurate transfer learning based RGB-D object recognition[C]//Proceedings of the International Joint Conference on Computational Intelligence, 2017: 121-128.
|
[11] |
Liu H P, Li F X, Xu X Y, et al. Multi-modal local receptive field extreme learning machine for object recognition[J]. Neurocomputing, 2018, 277: 4-11. doi: 10.1016/j.neucom.2017.04.077
|
[12] |
Asif U, Bennamoun M, Sohel F A. RGB-D object recognition and grasp detection using hierarchical cascaded forests[J]. IEEE Trans Robot, 2017, 33(3): 547-564. doi: 10.1109/TRO.2016.2638453
|
[13] |
李梁华, 王永雄. 高效3D密集残差网络及其在人体行为识别中的应用[J]. 光电工程, 2020, 47(2): 190139. doi: 10.12086/oee.2020.190139
Li L H, Wang Y X. Efficient 3D dense residual network and its application in human action recognition[J]. Opto-Electron Eng, 2020, 47(2): 190139. doi: 10.12086/oee.2020.190139
|
[14] |
Cheng Y H, Cai R, Zhao X, et al. Convolutional fisher kernels for RGB-D object recognition[C]//Proceedings of 2015 International Conference on 3D Vision, 2015: 135-143.
|
[15] |
Szegedy C, Liu W, Jia Y Q, et al. Going deeper with convolutions[C]//Proceedings of 2015 IEEE Conference on Computer Vision and Pattern Recognition, 2015: 1-9.
|
[16] |
Li X, Zhao Z F, Liu L, et al. An optimization model of multi-intersection signal control for trunk road under collaborative information[J]. J Control Sci Eng, 2017, 2017: 2846987. http://www.researchgate.net/publication/317158890_An_Optimization_Model_of_Multi-Intersection_Signal_Control_for_Trunk_Road_under_Collaborative_Information
|
[17] |
沈明玉, 俞鹏飞, 汪荣贵, 等. 多路径递归网络结构的单帧图像超分辨率重建[J]. 光电工程, 2019, 46(11): 180489. doi: 10.12086/oee.2019.180489
Shen M Y, Yu P F, Wang R G, et al. Image superresolution via multipath recursive convolutional network[J]. Opto-Electron Eng, 2019, 46(11): 180489. doi: 10.12086/oee.2019.180489
|
[18] |
Ren X F, Bo L F, Fox D. RGB-(D) scene labeling: features and algorithms[C]//Proceedings of 2012 IEEE Conference on Computer Vision and Pattern Recognition, 2012: 2759-2766.
|
[19] |
Schwarz M, Schulz H, Behnke S. RGB-D object recognition and pose estimation based on pre-trained convolutional neural network features[C]//Proceedings of 2015 IEEE International Conference on Robotics and Automation (ICRA), 2015: 1329-1335.
|
[20] |
向程谕, 王冬丽, 周彦, 等. 基于RGB-D融合特征的图像分类[J]. 计算机工程与应用, 2018, 54(8): 178-182, 254. https://www.cnki.com.cn/Article/CJFDTOTAL-JSGG201808029.htm
Xiang C Y, Wang D L, Zhou Y, et al. Image classification based on RGB-D fusion feature[J]. Comput Eng Appl, 2018, 54(8): 178-182, 254. https://www.cnki.com.cn/Article/CJFDTOTAL-JSGG201808029.htm
|