Issue 2
Feb 2021
Turn off MathJax
Article Contents
Li Xun, Li Linpeng, Alexander Lazovik, Wang Wenjie, Wang Xiaohua. RGB-D object recognition algorithm based on improved double stream convolution recursive neural network[J]. JOURNAL OF MECHANICAL ENGINEERING, 2021, 48(2): 200069. doi: 10.12086/oee.2021.200069
Citation: Li Xun, Li Linpeng, Alexander Lazovik, Wang Wenjie, Wang Xiaohua. RGB-D object recognition algorithm based on improved double stream convolution recursive neural network[J]. JOURNAL OF MECHANICAL ENGINEERING, 2021, 48(2): 200069. doi: 10.12086/oee.2021.200069

RGB-D object recognition algorithm based on improved double stream convolution recursive neural network

doi: 10.12086/oee.2021.200069
Funds:

National Natural Science Foundation of China 61971339

Basic Research Program of Natural Science in Shaanxi Province 2019JM567

Science and Technology Guiding Project of China Textile Industry Federation 2018094

Innovation and Entrepreneurship Training Programme for University Students 201910709019

More Information
  • Corresponding author: Li Linpeng, E-mail: 771613990@qq.com
  • Received Date: 02 Apr 2020
  • Rev Recd Date: 13 Jun 2020
  • An algorithm (Re-CRNN) of image processing is proposed using RGB-D object recognition, which is improved based on a double stream convolutional recursive neural network, in order to improve the accuracy of object recognition. Re-CRNN combines RGB image with depth optical information, the double stream convolutional neural network (CNN) is improved based on the idea of residual learning as follows: top-level feature fusion unit is added into the network, the representation of federation feature is learning in RGB images and depth images and the high-level features are integrated in across channels of the extracted RGB images and depth images information, after that, the probability distribution was generated by Softmax. Finally, the experiment was carried out on the standard RGB-D data set. The experimental results show that the accuracy was 94.1% using Re-CRNN algorithm for the RGB-D object recognition, which was significantly improved compared with the existing image-based object recognition methods.

     

  • loading
  • [1]
    Lai K, Bo L F, Ren X F, et al. A large-scale hierarchical multi-view RGB-D object dataset[C]//Proceedings of 2011 IEEE International Conference on Robotics and Automation, 2011: 1817-1824.
    [2]
    Paulk D, Metsis V, McMurrough C, et al. A supervised learning approach for fast object recognition from RGB-D data[C]//Proceedings of the 7th International Conference on PErvasive Technologies Related to Assistive Environments, 2014: 5.
    [3]
    Bo L F, Ren X F, Fox D. Depth kernel descriptors for object recognition[C]//Proceedings of 2011 IEEE/RSJ International Conference on Intelligent Robots and Systems, 2011: 821-826.
    [4]
    Blum M, Springenberg J T, Wülfing J, et al. A learned feature descriptor for object recognition in RGB-D data[C]//Proceedings of 2012 IEEE International Conference on Robotics and Automation, 2012: 1298-1303.
    [5]
    向程谕. RGB-D图像的特征提取与分类方法研究[D]. 湘潭: 湘潭大学, 2017: 28-31.

    Xiang C Y. Research on feature extraction and classification method of RGB-D images[D]. Xiangtan: Xiangtan University, 2017: 28-31.
    [6]
    李珣, 李林鹏, 南恺恺, 等. 智能家居移动机器人的人脸识别方法[J]. 西安工程大学学报, 2020, 34(1): 61-66. https://www.cnki.com.cn/Article/CJFDTOTAL-XBFZ202001010.htm

    Li X, Li L P, Nan K K, et al. Face recognition method of smart home mobile robot[J]. J Xi'an Poly Univ, 2020, 34(1): 61-66. https://www.cnki.com.cn/Article/CJFDTOTAL-XBFZ202001010.htm
    [7]
    Socher R, Huval B, Bhat B, et al. Convolutional-recursive deep learning for 3D object classification[C]//Proceedings of the 25th International Conference on Neural Information Processing Systems, 2012: 665-673.
    [8]
    殷云华, 李会方. 基于混合卷积自编码极限学习机的RGB-D物体识别[J]. 红外与激光工程, 2018, 47(2): 0203008. https://www.cnki.com.cn/Article/CJFDTOTAL-HWYJ201802009.htm

    Yin Y H, Li H F. RGB-D object recognition based on hybrid convolutional auto-encoder extreme learning machine[J]. Infrared Laser Eng, 2018, 47(2): 0203008. https://www.cnki.com.cn/Article/CJFDTOTAL-HWYJ201802009.htm
    [9]
    Eitel A, Springenberg J T, Spinello L, et al. Multimodal deep learning for robust RGB-D object recognition[C]//Proceedings of 2015 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), 2015: 681-687.
    [10]
    Aakerberg A, Nasrollahi K, Rasmussen C B, et al. Depth value pre-processing for accurate transfer learning based RGB-D object recognition[C]//Proceedings of the International Joint Conference on Computational Intelligence, 2017: 121-128.
    [11]
    Liu H P, Li F X, Xu X Y, et al. Multi-modal local receptive field extreme learning machine for object recognition[J]. Neurocomputing, 2018, 277: 4-11. doi: 10.1016/j.neucom.2017.04.077
    [12]
    Asif U, Bennamoun M, Sohel F A. RGB-D object recognition and grasp detection using hierarchical cascaded forests[J]. IEEE Trans Robot, 2017, 33(3): 547-564. doi: 10.1109/TRO.2016.2638453
    [13]
    李梁华, 王永雄. 高效3D密集残差网络及其在人体行为识别中的应用[J]. 光电工程, 2020, 47(2): 190139. doi: 10.12086/oee.2020.190139

    Li L H, Wang Y X. Efficient 3D dense residual network and its application in human action recognition[J]. Opto-Electron Eng, 2020, 47(2): 190139. doi: 10.12086/oee.2020.190139
    [14]
    Cheng Y H, Cai R, Zhao X, et al. Convolutional fisher kernels for RGB-D object recognition[C]//Proceedings of 2015 International Conference on 3D Vision, 2015: 135-143.
    [15]
    Szegedy C, Liu W, Jia Y Q, et al. Going deeper with convolutions[C]//Proceedings of 2015 IEEE Conference on Computer Vision and Pattern Recognition, 2015: 1-9.
    [16]
    Li X, Zhao Z F, Liu L, et al. An optimization model of multi-intersection signal control for trunk road under collaborative information[J]. J Control Sci Eng, 2017, 2017: 2846987. http://www.researchgate.net/publication/317158890_An_Optimization_Model_of_Multi-Intersection_Signal_Control_for_Trunk_Road_under_Collaborative_Information
    [17]
    沈明玉, 俞鹏飞, 汪荣贵, 等. 多路径递归网络结构的单帧图像超分辨率重建[J]. 光电工程, 2019, 46(11): 180489. doi: 10.12086/oee.2019.180489

    Shen M Y, Yu P F, Wang R G, et al. Image superresolution via multipath recursive convolutional network[J]. Opto-Electron Eng, 2019, 46(11): 180489. doi: 10.12086/oee.2019.180489
    [18]
    Ren X F, Bo L F, Fox D. RGB-(D) scene labeling: features and algorithms[C]//Proceedings of 2012 IEEE Conference on Computer Vision and Pattern Recognition, 2012: 2759-2766.
    [19]
    Schwarz M, Schulz H, Behnke S. RGB-D object recognition and pose estimation based on pre-trained convolutional neural network features[C]//Proceedings of 2015 IEEE International Conference on Robotics and Automation (ICRA), 2015: 1329-1335.
    [20]
    向程谕, 王冬丽, 周彦, 等. 基于RGB-D融合特征的图像分类[J]. 计算机工程与应用, 2018, 54(8): 178-182, 254. https://www.cnki.com.cn/Article/CJFDTOTAL-JSGG201808029.htm

    Xiang C Y, Wang D L, Zhou Y, et al. Image classification based on RGB-D fusion feature[J]. Comput Eng Appl, 2018, 54(8): 178-182, 254. https://www.cnki.com.cn/Article/CJFDTOTAL-JSGG201808029.htm
  • 加载中

Catalog

    Figures(12)  / Tables(3)

    Article Metrics

    Article views(190) PDF downloads(0) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return