Issue 2
Feb 2021
Turn off MathJax
Article Contents
Chen Hao, Wei Ling, Li Ende, He Yi, Yang Jinsheng, Li Xiqi, Fan Xinlong, Yang Zeping, Zhang Yudong. A B-spline based fast wavefront reconstruction algorithm[J]. JOURNAL OF MECHANICAL ENGINEERING, 2021, 48(2): 200160. doi: 10.12086/oee.2021.200160
Citation: Chen Hao, Wei Ling, Li Ende, He Yi, Yang Jinsheng, Li Xiqi, Fan Xinlong, Yang Zeping, Zhang Yudong. A B-spline based fast wavefront reconstruction algorithm[J]. JOURNAL OF MECHANICAL ENGINEERING, 2021, 48(2): 200160. doi: 10.12086/oee.2021.200160

A B-spline based fast wavefront reconstruction algorithm

doi: 10.12086/oee.2021.200160
Funds:

National Natural Science Foundation of China 61605210

National Natural Science Foundation of China 61675226

National Natural Science Foundation of China 61378090

the National Instrumentation Program 2012YQ120080

the National Key Research and Development Program of China 2016YFC0102500

the National Key Research and Development Program of China 2017YFB0403700

More Information
  • Traditional schemes for Shack-Hartmann wavefront reconstruction can be classified into zonal and modal methods. The zonal methods are good at reconstructing the local details of the wavefront, but are sensitive to the noise in the slope data. The modal methods are much more robust to the noise, but they have limited capability of recovering the local details of the wavefront. In this paper, a B-spline based fast wavefront reconstruction algorithm in which the wavefront is expanded to the linear combination of bi-variable B-spline curved surfaces is proposed. Then, a method based on successive over relaxation (SOR) algorithm is proposed to fast reconstruct the wavefront. Experimental results show that the proposed algorithm can recover the local details of the wavefront as good as the zonal methods, while is much more robust to the slope noise.

     

  • loading
  • [1]
    Furukawa Y, Takaie Y, Maeda Y, et al. Development of one-shot aspheric measurement system with a Shack-Hartmann sensor[J]. Appl Opt, 2016, 55(29): 8138–8144. doi: 10.1364/AO.55.008138
    [2]
    Wu Y, He J C, Zhou X T, et al. A limitation of Hartmann-Shack system in measuring wavefront aberrations for patients received laser refractive surgery[J]. PLoS One, 2015, 10(2): e0117256. doi: 10.1371/journal.pone.0117256
    [3]
    杨泽平, 李恩德, 张小军, 等. "神光-Ⅲ"主机装置的自适应光学波前校正系统[J]. 光电工程, 2018, 45(3): 180049. doi: 10.12086/oee.2018.180049

    Yang Z P, Li E D, Zhang X J, et al. Adaptive optics correction systems on Shen Guang Ⅲ facility[J]. Opto-Electron Eng, 2018, 45(3): 180049. doi: 10.12086/oee.2018.180049
    [4]
    周睿, 魏凌, 李新阳, 等. 点光源哈特曼最优阈值估计方法研究[J]. 物理学报, 2017, 66(9): 090701. https://www.cnki.com.cn/Article/CJFDTOTAL-WLXB201709006.htm

    Zhou R, Wei L, Li X Y, et al. Shack-Hartmann optimum threshold estimation for the point source[J]. Acta Phys Sin, 2017, 66(9): 090701. https://www.cnki.com.cn/Article/CJFDTOTAL-WLXB201709006.htm
    [5]
    Wei L, Shi G H, Lu J, et al. Centroid offset estimation in the Fourier domain for a highly sensitive Shack–Hartmann wavefront sensor[J]. J Opt, 2013, 15(5): 055702. doi: 10.1088/2040-8978/15/5/055702
    [6]
    Fried D L. Least-square fitting a wave-front distortion estimate to an array of phase-difference measurements[J]. J Opt Soc Am, 1977, 67(3): 370–375. doi: 10.1364/JOSA.67.000370
    [7]
    Southwell W H. Wave-front estimation from wave-front slope measurements[J]. J Opt Soc Am, 1980, 70(8): 998–1006. doi: 10.1364/JOSA.70.000998
    [8]
    Dai F Z, Tang F, Wang X Z, et al. Modal wavefront reconstruction based on Zernike polynomials for lateral shearing interferometry: comparisons of existing algorithms[J]. Appl Opt, 2012, 51(21): 5028–5037. doi: 10.1364/AO.51.005028
    [9]
    Lee H. Use of Zernike polynomials for efficient estimation of orthonormal aberration coefficients over variable noncircular pupils[J]. Opt Lett, 2010, 35(13): 2173–2175. doi: 10.1364/OL.35.002173
    [10]
    Nam J, Thibos L N, Iskander D R. Zernike radial slope polynomials for wavefront reconstruction and refraction[J]. J Opt Soc Am A, 2009, 26(4): 1035–1048. doi: 10.1364/JOSAA.26.001035
    [11]
    汤国茂, 何玉梅, 廖周. 大型光学系统径向哈特曼像质检测方法[J]. 中国激光, 2010, 37(3): 795–799. https://www.cnki.com.cn/Article/CJFDTOTAL-JJZZ201003040.htm

    Tang G M, He Y M, Liao Z. Radial Hartmann method for measuring large optical system[J]. Chin J Lasers, 2010, 37(3): 795–799. https://www.cnki.com.cn/Article/CJFDTOTAL-JJZZ201003040.htm
    [12]
    Darudi A, Bakhshi H, Asgari R. Image restoration using aberration taken by a Hartmann wavefront sensor on extended object, towards real-time deconvolution[J]. Proc SPIE, 2015, 9530: 95300Q. doi: 10.1117/12.2184852
    [13]
    Seifert L, Tiziani H J, Osten W. Wavefront reconstruction with the adaptive Shack–Hartmann sensor[J]. Opt Commun, 2005, 245(1–6): 255–269. doi: 10.1016/j.optcom.2004.09.074
    [14]
    Ares M, Royo S. Comparison of cubic B-spline and Zernike-fitting techniques in complex wavefront reconstruction[J]. Appl Opt, 2006, 45(27): 6954–6964. doi: 10.1364/AO.45.006954
    [15]
    de Visser C C, Verhaegen M. Wavefront reconstruction in adaptive optics systems using nonlinear multivariate splines[J]. J Opt Soc Am A, 2013, 30(1): 82–95. doi: 10.1364/JOSAA.30.000082
    [16]
    Huang L, Xue J P, Gao B, et al. Spline based least squares integration for two-dimensional shape or wavefront reconstruction[J]. Opt Lasers Eng, 2017, 91: 221–226. doi: 10.1016/j.optlaseng.2016.12.004
    [17]
    Pant K K, Burada D R, Bichra M, et al. Weighted spline based integration for reconstruction of freeform wavefront[J]. Appl Opt, 2018, 57(5): 1100–1109. doi: 10.1364/AO.57.001100
    [18]
    Knott G D. Interpolating Cubic Splines[M]. Boston: Birkhäuser, 2000.
    [19]
    叶其孝, 沈永欢. 实用数学手册[M]. 2版. 北京: 科学出版社, 2006.
    [20]
    Yang J S, Wei L, Chen H L, et al. Absolute calibration of Hartmann-Shack wavefront sensor by spherical wavefronts[J]. Opt Commun, 2010, 283(6): 910–916. doi: 10.1016/j.optcom.2009.11.022
    [21]
    Xie D X. A new block parallel SOR method and its analysis[J]. SIAM J Sci Comput, 2006, 27(5): 1513–1533. doi: 10.1137/040604777
    [22]
    Chamot S R, Dainty C, Esposito S. Adaptive optics for ophthalmic applications using a pyramid wavefront sensor[J]. Opt Express, 2006, 14(2): 518–526. doi: 10.1364/OPEX.14.000518
    [23]
    Chanteloup J C F, Cohen M. Compact high resolution four wave lateral shearing interferometer[J]. Proc SPIE, 2004, 5252: 282–292. doi: 10.1117/12.513739
  • 加载中

Catalog

    Figures(7)  / Tables(2)

    Article Metrics

    Article views(190) PDF downloads(0) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return