Citation: | Lv Chen, Cheng Deqiang, Kou Qiqi, Zhuang Huandong, Li Haixiang. Target tracking algorithm based on YOLOv3 and ASMS[J]. JOURNAL OF MECHANICAL ENGINEERING, 2021, 48(2): 200175. doi: 10.12086/oee.2021.200175 |
[1] |
卢湖川, 李佩霞, 王栋. 目标跟踪算法综述[J]. 模式识别与人工智能, 2018, 31(1): 61-76. https://www.cnki.com.cn/Article/CJFDTOTAL-MSSB201801008.htm
Lu H C, Li P X, Wang D. Visual object tracking: a survey[J]. Pattern Recognit Artif Intell, 2018, 31(1): 61-76. https://www.cnki.com.cn/Article/CJFDTOTAL-MSSB201801008.htm
|
[2] |
李玺, 查宇飞, 张天柱, 等. 深度学习的目标跟踪算法综述[J]. 中国图象图形学报, 2019, 24(12): 2057-2080. doi: 10.11834/jig.190372
Li X, Zha Y F, Zhang T Z, et al. Survey of visual object tracking algorithms based on deep learning[J]. J Image Graph, 2019, 24(12): 2057–2080. doi: 10.11834/jig.190372
|
[3] |
葛宝义, 左宪章, 胡永江. 视觉目标跟踪方法研究综述[J]. 中国图象图形学报, 2018, 23(8): 1091-1107. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGTB201808001.htm
Ge B Y, Zuo X Z, Hu Y J. Review of visual object tracking technology[J]. J Image Graph, 2018, 23(8): 1091–1107. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGTB201808001.htm
|
[4] |
Sun D Q, Roth S, Black M J. Secrets of optical flow estimation and their principles[C]//Proceedings of 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, San Francisco, CA, 2010: 2432-2439.
|
[5] |
Nummiaro K, Koller-Meier E, Van Gool L. An adaptive color-based particle filter[J]. Image Vis Comput, 2003, 21(1): 99-110. doi: 10.1016/S0262-8856(02)00129-4
|
[6] |
Comaniciu D, Ramesh V, Meer P. Real-time tracking of non-rigid objects using mean shift[C]//Proceedings IEEE Conference on Computer Vision and Pattern Recognition. CVPR 2000 (Cat. No. PR00662), Hilton Head Island, SC, 2002: 142–149.
|
[7] |
Babenko B, Yang M H, Belongie S. Robust object tracking with online multiple instance learning[J]. IEEE Trans Pattern Anal Mach Intell, 2011, 33(8): 1619–1632. doi: 10.1109/TPAMI.2010.226
|
[8] |
Kalal Z, Mikolajczyk K, Matas J. Tracking-learning-detection[J]. IEEE Trans Pattern Anal Mach Intell, 2012, 34(7): 1409–1422. doi: 10.1109/TPAMI.2011.239
|
[9] |
Avidan S. Support vector tracking[J]. IEEE Trans Pattern Anal Mach Intell, 2004, 26(8): 1064-1072. doi: 10.1109/TPAMI.2004.53
|
[10] |
Vojir T, Noskova J, Matas J. Robust scale-adaptive mean-shift for tracking[C]//Proceedings of the 18th Scandinavian Conference Scandinavian Conference on Image Analysis, Espoo, Finland, 2014: 652–663.
|
[11] |
Girshick R, Donahue J, Darrell T, et al. Rich feature hierarchies for accurate object detection and semantic segmentation[C]//Proceedings of 2014 IEEE Conference on Computer Vision and Pattern Recognition, Columbus, OH, 2014: 580–587.
|
[12] |
Girshick R. Fast R-CNN[C]//Proceedings of the IEEE International Conference on Computer Vision, Santigago, Chile, 2015: 1440–1448.
|
[13] |
Ren S Q, He K M, Girshick R, et al. Faster R-CNN: towards real-time object detection with region proposal networks[J]. IEEE Trans Pattern Anal Mach Intell, 2017, 39(6): 1137–1149. doi: 10.1109/TPAMI.2016.2577031
|
[14] |
Redmon J, Divvala S, Girshick R, et al. You only look once: unified, real-time object detection[C]//Proceedings of 2016 IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, NV, 2016: 779–788.
|
[15] |
Liu W, Anguelov D, Erhan D, et al. SSD: single shot MultiBox detector[C]//Proceedings of the 14th European Conference European Conference on Computer Vision, Amsterdam, 2016: 21–37.
|
[16] |
Redmon J, Farhadi A. YOLOv3: an incremental improvement[EB/OL]. [2020-02-10]. https://pjreddie.com/media/files/papers/YOLOv3.pdf.
|
[17] |
Redmon J, Farhadi A. YOLO9000: better, faster, stronger[C]//Proceedings of 2017 IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, HI, 2017: 6517–6525.
|
[18] |
Fu C Y, Liu W, Ranga A, et al. DSSD: deconvolutional single shot detector[EB/OL]. [2020-02-10]. https://arxiv.org/pdf/1701.06659.pdf.
|
[19] |
Li Z X, Zhou F Q. FSSD: feature fusion single shot multibox detector[EB/OL]. [2020-02-10]. https://arxiv.org/pdf/1712.00960.pdf.
|
[20] |
Liu Z, Li J G, Shen Z Q, et al. Learning efficient convolutional networks through network slimming[C]//Proceedings of 2017 IEEE International Conference on Computer Vision, Venice, Italy, 2017: 2755–2763.
|
[21] |
Chen G B, Choi W, Yu X, et al. Learning efficient object detection models with knowledge distillation[EB/OL]. [2020-02-10] http://papers.nips.cc/paper/6676-learning-efficient-object-detection-models-with-knowledge-distillation.pdf.
|
[22] |
Wu J X, Leng C, Wang Y H, et al. Quantized convolutional neural networks for mobile devices[C]//Proceedings of 2016 IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, NV, 2016: 4820–4828.
|
[23] |
Huang G, Chen D L, Li T H, et al. Multi-scale dense networks for resource efficient image classification[EB/OL]. [2020-02-10] https://arxiv.org/pdf/1703.09844.pdf.
|
[24] |
He M, Zhao H W, Wang G Z, et al. Deep neural network acceleration method based on sparsity[C]//Proceedings of the 15th International Forum International Forum on Digital TV and Wireless Multimedia Communications, Shanghai, China, 2019: 133–145.
|
[25] |
Henriques J F, Caseiro R, Martins P, et al. High-speed tracking with kernelized correlation filters[J]. IEEE Trans Pattern Anal Mach Intell, 2015, 37(3): 583–596. doi: 10.1109/TPAMI.2014.2345390
|
[26] |
Song Y B, Ma C, Wu X H, et al. VITAL: visual tracking via adversarial learning[C]//Proceedings of 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, 2018: 8990–8999.
|
[27] |
Fan H, Ling H B. SANet: structure-aware network for visual tracking[C]//Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition Workshops, Honolulu, Hl, 2017: 2217–2224.
|