Issue 2
Feb 2021
Turn off MathJax
Article Contents
Lv Chen, Cheng Deqiang, Kou Qiqi, Zhuang Huandong, Li Haixiang. Target tracking algorithm based on YOLOv3 and ASMS[J]. JOURNAL OF MECHANICAL ENGINEERING, 2021, 48(2): 200175. doi: 10.12086/oee.2021.200175
Citation: Lv Chen, Cheng Deqiang, Kou Qiqi, Zhuang Huandong, Li Haixiang. Target tracking algorithm based on YOLOv3 and ASMS[J]. JOURNAL OF MECHANICAL ENGINEERING, 2021, 48(2): 200175. doi: 10.12086/oee.2021.200175

Target tracking algorithm based on YOLOv3 and ASMS

doi: 10.12086/oee.2021.200175
Funds:

National Natural Science Foundation of China 51774281

More Information
  • Corresponding author: Lv Chen, E-mail: 286562685@qq.com
  • Received Date: 18 May 2020
  • Rev Recd Date: 24 Sep 2020
  • In order to solve the problem of loss when the target encounters occlusion or the speed is too fast during the automatic tracking process, a target tracking algorithm based on YOLOv3 and ASMS is proposed. Firstly, the target is detected by the YOLOv3 algorithm and the initial target area to be tracked is determined. After that, the ASMS algorithm is used for tracking. The tracking effect of the target is detected and judged in real time. Repositioning is achieved by quadratic fitting positioning and the YOLOv3 algorithm when the target is lost. Finally, in order to further improve the efficiency of the algorithm, the incremental pruning method is used to compress the algorithm model. Compared with the mainstream algorithms, experimental results show that the proposed algorithm can solve the lost problem when the tracking target is occluded, improving the accuracy of target detection and tracking. It also has advantages of low computational complexity, time-consuming, and high real-time performance.

     

  • loading
  • [1]
    卢湖川, 李佩霞, 王栋. 目标跟踪算法综述[J]. 模式识别与人工智能, 2018, 31(1): 61-76. https://www.cnki.com.cn/Article/CJFDTOTAL-MSSB201801008.htm

    Lu H C, Li P X, Wang D. Visual object tracking: a survey[J]. Pattern Recognit Artif Intell, 2018, 31(1): 61-76. https://www.cnki.com.cn/Article/CJFDTOTAL-MSSB201801008.htm
    [2]
    李玺, 查宇飞, 张天柱, 等. 深度学习的目标跟踪算法综述[J]. 中国图象图形学报, 2019, 24(12): 2057-2080. doi: 10.11834/jig.190372

    Li X, Zha Y F, Zhang T Z, et al. Survey of visual object tracking algorithms based on deep learning[J]. J Image Graph, 2019, 24(12): 2057–2080. doi: 10.11834/jig.190372
    [3]
    葛宝义, 左宪章, 胡永江. 视觉目标跟踪方法研究综述[J]. 中国图象图形学报, 2018, 23(8): 1091-1107. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGTB201808001.htm

    Ge B Y, Zuo X Z, Hu Y J. Review of visual object tracking technology[J]. J Image Graph, 2018, 23(8): 1091–1107. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGTB201808001.htm
    [4]
    Sun D Q, Roth S, Black M J. Secrets of optical flow estimation and their principles[C]//Proceedings of 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, San Francisco, CA, 2010: 2432-2439.
    [5]
    Nummiaro K, Koller-Meier E, Van Gool L. An adaptive color-based particle filter[J]. Image Vis Comput, 2003, 21(1): 99-110. doi: 10.1016/S0262-8856(02)00129-4
    [6]
    Comaniciu D, Ramesh V, Meer P. Real-time tracking of non-rigid objects using mean shift[C]//Proceedings IEEE Conference on Computer Vision and Pattern Recognition. CVPR 2000 (Cat. No. PR00662), Hilton Head Island, SC, 2002: 142–149.
    [7]
    Babenko B, Yang M H, Belongie S. Robust object tracking with online multiple instance learning[J]. IEEE Trans Pattern Anal Mach Intell, 2011, 33(8): 1619–1632. doi: 10.1109/TPAMI.2010.226
    [8]
    Kalal Z, Mikolajczyk K, Matas J. Tracking-learning-detection[J]. IEEE Trans Pattern Anal Mach Intell, 2012, 34(7): 1409–1422. doi: 10.1109/TPAMI.2011.239
    [9]
    Avidan S. Support vector tracking[J]. IEEE Trans Pattern Anal Mach Intell, 2004, 26(8): 1064-1072. doi: 10.1109/TPAMI.2004.53
    [10]
    Vojir T, Noskova J, Matas J. Robust scale-adaptive mean-shift for tracking[C]//Proceedings of the 18th Scandinavian Conference Scandinavian Conference on Image Analysis, Espoo, Finland, 2014: 652–663.
    [11]
    Girshick R, Donahue J, Darrell T, et al. Rich feature hierarchies for accurate object detection and semantic segmentation[C]//Proceedings of 2014 IEEE Conference on Computer Vision and Pattern Recognition, Columbus, OH, 2014: 580–587.
    [12]
    Girshick R. Fast R-CNN[C]//Proceedings of the IEEE International Conference on Computer Vision, Santigago, Chile, 2015: 1440–1448.
    [13]
    Ren S Q, He K M, Girshick R, et al. Faster R-CNN: towards real-time object detection with region proposal networks[J]. IEEE Trans Pattern Anal Mach Intell, 2017, 39(6): 1137–1149. doi: 10.1109/TPAMI.2016.2577031
    [14]
    Redmon J, Divvala S, Girshick R, et al. You only look once: unified, real-time object detection[C]//Proceedings of 2016 IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, NV, 2016: 779–788.
    [15]
    Liu W, Anguelov D, Erhan D, et al. SSD: single shot MultiBox detector[C]//Proceedings of the 14th European Conference European Conference on Computer Vision, Amsterdam, 2016: 21–37.
    [16]
    Redmon J, Farhadi A. YOLOv3: an incremental improvement[EB/OL]. [2020-02-10]. https://pjreddie.com/media/files/papers/YOLOv3.pdf.
    [17]
    Redmon J, Farhadi A. YOLO9000: better, faster, stronger[C]//Proceedings of 2017 IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, HI, 2017: 6517–6525.
    [18]
    Fu C Y, Liu W, Ranga A, et al. DSSD: deconvolutional single shot detector[EB/OL]. [2020-02-10]. https://arxiv.org/pdf/1701.06659.pdf.
    [19]
    Li Z X, Zhou F Q. FSSD: feature fusion single shot multibox detector[EB/OL]. [2020-02-10]. https://arxiv.org/pdf/1712.00960.pdf.
    [20]
    Liu Z, Li J G, Shen Z Q, et al. Learning efficient convolutional networks through network slimming[C]//Proceedings of 2017 IEEE International Conference on Computer Vision, Venice, Italy, 2017: 2755–2763.
    [21]
    Chen G B, Choi W, Yu X, et al. Learning efficient object detection models with knowledge distillation[EB/OL]. [2020-02-10] http://papers.nips.cc/paper/6676-learning-efficient-object-detection-models-with-knowledge-distillation.pdf.
    [22]
    Wu J X, Leng C, Wang Y H, et al. Quantized convolutional neural networks for mobile devices[C]//Proceedings of 2016 IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, NV, 2016: 4820–4828.
    [23]
    Huang G, Chen D L, Li T H, et al. Multi-scale dense networks for resource efficient image classification[EB/OL]. [2020-02-10] https://arxiv.org/pdf/1703.09844.pdf.
    [24]
    He M, Zhao H W, Wang G Z, et al. Deep neural network acceleration method based on sparsity[C]//Proceedings of the 15th International Forum International Forum on Digital TV and Wireless Multimedia Communications, Shanghai, China, 2019: 133–145.
    [25]
    Henriques J F, Caseiro R, Martins P, et al. High-speed tracking with kernelized correlation filters[J]. IEEE Trans Pattern Anal Mach Intell, 2015, 37(3): 583–596. doi: 10.1109/TPAMI.2014.2345390
    [26]
    Song Y B, Ma C, Wu X H, et al. VITAL: visual tracking via adversarial learning[C]//Proceedings of 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, 2018: 8990–8999.
    [27]
    Fan H, Ling H B. SANet: structure-aware network for visual tracking[C]//Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition Workshops, Honolulu, Hl, 2017: 2217–2224.
  • 加载中

Catalog

    Figures(9)  / Tables(3)

    Article Metrics

    Article views(233) PDF downloads(0) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return